




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡
2、一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1下列函数中,既是奇函数,又在上是增函数的是( )ABCD2已知集合,集合,那么等于( )ABCD3若直线经过抛物线的焦点,则( )ABC2D4已知函数,其中,记函数满足条件:为事件,则事件发生的概率为ABCD5已知函数的部分图象如图所示,则( )ABCD6设某大学的女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(xi,yi)(i=1,2,n),用最小二乘法建立的回归方程为=0.85x-85.71,则下列结论中不正确的是Ay与x具有正的线性相关关系B
3、回归直线过样本点的中心(,)C若该大学某女生身高增加1cm,则其体重约增加0.85kgD若该大学某女生身高为170cm,则可断定其体重比为58.79kg7已知函数()的最小值为0,则( )ABCD8已知x,则“”是“”的( )A充分而不必要条件B必要而不充分条件C充分必要条件D既不充分也不必要条件9在等差数列中,若,则( )A8B12C14D1010若,则的虚部是( )ABCD11盒中有6个小球,其中4个白球,2个黑球,从中任取个球,在取出的球中,黑球放回,白球则涂黑后放回,此时盒中黑球的个数,则( )A,B,C,D,12已知f(x)=ax2+bx是定义在a1,2a上的偶函数,那么a+b的值是
4、ABCD二、填空题:本题共4小题,每小题5分,共20分。13已知抛物线的焦点为,过点且斜率为1的直线交抛物线于两点,若线段的垂直平分线与轴交点的横坐标为,则的值为_.14已知数列中,为其前项和,则_,_.15如果函数(,且,)在区间上单调递减,那么的最大值为_16已知的三个内角为,且,成等差数列, 则的最小值为_,最大值为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)在某外国语学校举行的(高中生数学建模大赛)中,参与大赛的女生与男生人数之比为,且成绩分布在,分数在以上(含)的同学获奖按女生、男生用分层抽样的方法抽取人的成绩作为样本,得到成绩的频率分布直方图如图
5、所示()求的值,并计算所抽取样本的平均值(同一组中的数据用该组区间的中点值作代表);()填写下面的列联表,并判断在犯错误的概率不超过的前提下能否认为“获奖与女生、男生有关”女生男生总计获奖不获奖总计附表及公式:其中,18(12分)2019年12月以来,湖北省武汉市持续开展流感及相关疾病监测,发现多起病毒性肺炎病例,均诊断为病毒性肺炎/肺部感染,后被命名为新型冠状病毒肺炎(CoronaVirusDisease2019,COVID19),简称“新冠肺炎”.下图是2020年1月15日至1月24日累计确诊人数随时间变化的散点图.为了预测在未釆取强力措施下,后期的累计确诊人数,建立了累计确诊人数y与时间
6、变量t的两个回归模型,根据1月15日至1月24日的数据(时间变量t的值依次1,2,10)建立模型和.(1)根据散点图判断,与哪一个适宜作为累计确诊人数y与时间变量t的回归方程类型?(给出判断即可,不必说明理由)(2根据(1)的判断结果及附表中数据,建立y关于x的回归方程;(3)以下是1月25日至1月29日累计确诊人数的真实数据,根据(2)的结果回答下列问题:时间1月25日1月26日1月27日1月28日1月29日累计确诊人数的真实数据19752744451559747111()当1月25日至1月27日这3天的误差(模型预测数据与真实数据差值的绝对值与真实数据的比值)都小于0.1则认为模型可靠,请
7、判断(2)的回归方程是否可靠?()2020年1月24日在人民政府的强力领导下,全国人民共同采取了强力的预防“新冠肺炎”的措施,若采取措施5天后,真实数据明显低于预测数据,则认为防护措施有效,请判断预防措施是否有效?附:对于一组数据(,其回归直线的斜率和截距的最小二乘估计分别为,.参考数据:其中,.5.53901938576403152515470010015022533850719(12分)追求人类与生存环境的和谐发展是中国特色社会主义生态文明的价值取向.为了改善空气质量,某城市环保局随机抽取了一年内100天的空气质量指数()的检测数据,结果统计如下:空气质量优良轻度污染中度污染重度污染严重污
8、染天数61418272510(1)从空气质量指数属于,的天数中任取3天,求这3天中空气质量至少有2天为优的概率;(2)已知某企业每天的经济损失(单位:元)与空气质量指数的关系式为,试估计该企业一个月(按30天计算)的经济损失的数学期望.20(12分)在平面直角坐标系中,点是直线上的动点,为定点,点为的中点,动点满足,且,设点的轨迹为曲线.(1)求曲线的方程;(2)过点的直线交曲线于,两点,为曲线上异于,的任意一点,直线,分别交直线于,两点.问是否为定值?若是,求的值;若不是,请说明理由.21(12分)已知是抛物线:的焦点,点在上,到轴的距离比小1.(1)求的方程;(2)设直线与交于另一点,为的
9、中点,点在轴上,.若,求直线的斜率.22(10分)如图,空间几何体中,是边长为2的等边三角形,平面平面,且平面平面,为中点.(1)证明:平面;(2)求二面角平面角的余弦值.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1B【解析】奇函数满足定义域关于原点对称且,在上即可.【详解】A:因为定义域为,所以不可能时奇函数,错误;B:定义域关于原点对称,且满足奇函数,又,所以在上,正确;C:定义域关于原点对称,且满足奇函数,在上,因为,所以在上不是增函数,错误;D:定义域关于原点对称,且,满足奇函数,在上很明显存在变号零点,所以在上不是增
10、函数,错误;故选:B【点睛】此题考查判断函数奇偶性和单调性,注意奇偶性的前提定义域关于原点对称,属于简单题目.2A【解析】求出集合,然后进行并集的运算即可.【详解】,.故选:A.【点睛】本小题主要考查一元二次不等式的解法,考查集合并集的概念和运算,属于基础题.3B【解析】计算抛物线的交点为,代入计算得到答案.【详解】可化为,焦点坐标为,故.故选:.【点睛】本题考查了抛物线的焦点,属于简单题.4D【解析】由得,分别以为横纵坐标建立如图所示平面直角坐标系,由图可知,.5A【解析】先利用最高点纵坐标求出A,再根据求出周期,再将代入求出的值.最后将代入解析式即可.【详解】由图象可知A1,所以T,.f(
11、x)sin(2x+),将代入得)1,结合0,.sin.故选:A.【点睛】本题考查三角函数的据图求式问题以及三角函数的公式变换.据图求式问题要注意结合五点法作图求解.属于中档题.6D【解析】根据y与x的线性回归方程为 y=0.85x85.71,则=0.850,y 与 x 具有正的线性相关关系,A正确;回归直线过样本点的中心(),B正确;该大学某女生身高增加 1cm,预测其体重约增加 0.85kg,C正确;该大学某女生身高为 170cm,预测其体重约为0.8517085.71=58.79kg,D错误故选D7C【解析】设,计算可得,再结合图像即可求出答案.【详解】设,则,则,由于函数的最小值为0,作
12、出函数的大致图像, 结合图像,得,所以.故选:C【点睛】本题主要考查了分段函数的图像与性质,考查转化思想,考查数形结合思想,属于中档题.8D【解析】,不能得到, 成立也不能推出,即可得到答案.【详解】因为x,当时,不妨取,故时,不成立,当时,不妨取,则不成立,综上可知,“”是“”的既不充分也不必要条件,故选:D【点睛】本题主要考查了充分条件,必要条件的判定,属于容易题.9C【解析】将,分别用和的形式表示,然后求解出和的值即可表示.【详解】设等差数列的首项为,公差为,则由,得解得,所以故选C【点睛】本题考查等差数列的基本量的求解,难度较易.已知等差数列的任意两项的值,可通过构建和的方程组求通项公
13、式.10D【解析】通过复数的乘除运算法则化简求解复数为:的形式,即可得到复数的虚部.【详解】由题可知,所以的虚部是1.故选:D.【点睛】本题考查复数的代数形式的混合运算,复数的基本概念,属于基础题.11C【解析】根据古典概型概率计算公式,计算出概率并求得数学期望,由此判断出正确选项.【详解】表示取出的为一个白球,所以.表示取出一个黑球,所以.表示取出两个球,其中一黑一白,表示取出两个球为黑球,表示取出两个球为白球,所以.所以,.故选:C【点睛】本小题主要考查离散型随机变量分布列和数学期望的计算,属于中档题.12B【解析】依照偶函数的定义,对定义域内的任意实数,f(x)=f(x),且定义域关于原
14、点对称,a1=2a,即可得解.【详解】根据偶函数的定义域关于原点对称,且f(x)是定义在a1,2a上的偶函数,得a1=2a,解得a=,又f(x)=f(x),b=0,a+b=故选B【点睛】本题考查偶函数的定义,对定义域内的任意实数,f(x)=f(x);奇函数和偶函数的定义域必然关于原点对称,定义域区间两个端点互为相反数二、填空题:本题共4小题,每小题5分,共20分。131【解析】设,写出直线方程代入抛物线方程后应用韦达定理求得,由抛物线定义得焦点弦长,求得,再写出的垂直平分线方程,得,从而可得结论【详解】抛物线的焦点坐标为,直线的方程为,据得.设,则.线段垂直平分线方程为,令,则,所以,所以.故
15、答案为:1【点睛】本题考查抛物线的焦点弦问题,根据抛物线的定义表示出焦点弦长是解题关键148 (写为也得分) 【解析】由,得,.当时,所以,所以的奇数项是以1为首项,以2为公比的等比数列;其偶数项是以2为首项,以2为公比的等比数列.则,.1518【解析】根据函数单调性的性质,分一次函数和一元二次函数的对称性和单调区间的关系建立不等式,利用基本不等式求解即可.【详解】解:当时, ,在区间上单调递减,则,即,则.当时, ,函数开口向上,对称轴为,因为在区间上单调递减,则,因为,则,整理得,又因为,则.所以即,所以当且仅当时等号成立.综上所述,的最大值为18.故答案为:18【点睛】本题主要考查一次函
16、数与二次函数的单调性和均值不等式.利用均值不等式求解要注意”一定,二正,三相等”.16 【解析】根据正弦定理可得,利用余弦定理以及均值不等式,可得角的范围,然后构造函数,利用导数,研究函数性质,可得结果.【详解】由,成等差数列所以所以又化简可得当且仅当时,取等号又,所以令,则当,即时,当,即时,则在递增,在递减所以由,所以所以的最小值为最大值为故答案为:,【点睛】本题考查等差数列、正弦定理、余弦定理,还考查了不等式、导数的综合应用,难点在于根据余弦定理以及不等式求出,考验分析能力以及逻辑思维能力,属难题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(),;()详见解析.【
17、解析】()根据概率的性质知所有矩形的面积之和等于列式可解得; ()由频率分布直方图知样本中获奖的人数为,不获奖的人数为,从而可得列联表,再计算出,与临界值比较可得【详解】解:(),()由频率分布直方图知样本中获奖的人数为,不获奖的人数为,列联表如下:女生男生总计获奖不获奖总计因为,所以在犯错误的概率不超过的前提下能认为“获奖与女生,男生有关”【点睛】本题主要考查独立性检验,以及由频率分布直方图求平均数的问题,熟记独立性检验的思想,以及平均数的计算方法即可,属于常考题型.18(1)适宜(2)(3)()回归方程可靠()防护措施有效【解析】(1)根据散点图即可判断出结果.(2)设,则,求出,再由回归
18、方程过样本中心点求出,即可求出回归方程.(3)()利用表中数据,计算出误差即可判断回归方程可靠;()当时,与真实值作比较即可判断有效.【详解】(1)根据散点图可知:适宜作为累计确诊人数与时间变量的回归方程类型;(2)设,则,;(3)()时,当时,当时,所以(2)的回归方程可靠:()当时,10150远大于7111,所以防护措施有效.【点睛】本题考查了函数模型的应用,在求非线性回归方程时,现将非线性的化为线性的,考查了误差的计算以及用函数模型分析数据,属于基础题.19(1) (2)9060元【解析】(1)根据古典概型概率公式和组合数的计算可得所求概率;(2) 任选一天,设该天的经济损失为元,分别求
19、出,进而求得数学期望,据此得出该企业一个月经济损失的数学期望.【详解】解:(1)设为选取的3天中空气质量为优的天数,则.(2)任选一天,设该天的经济损失为元,则的可能取值为0,220,1480,所以(元),故该企业一个月的经济损失的数学期望为(元).【点睛】本题考查古典概型概率公式和组合数的计算及数学期望,属于基础题.20(1);(2)是定值,.【解析】(1)设出M的坐标为,采用直接法求曲线的方程;(2)设AB的方程为,,,求出AT方程,联立直线方程得D点的坐标,同理可得E点的坐标,最后利用向量数量积算即可.【详解】(1)设动点M的坐标为,由知,又在直线上,所以P点坐标为,又,点为的中点,所以,由得,即;(2)设直线AB的方程为,代入得,设,则,设,则,所以AT的直线方程为即,令,则,所以D点的坐标为,同理E点的坐标为,于是,所以,从而,所以是定值.【点睛】本题考查了直接法求抛物线的轨迹方程、直线与抛物线位置关系中的定值问题,在处理此类问题一般要涉及根与系数的关系,本题思路简单,但计算量比较大,是一道有一定难
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 四川资阳中学2024-2025学年高三5月高考冲刺英语试题含解析
- 江苏省泰州市实验小学2024-2025学年数学四下期末质量跟踪监视模拟试题含解析
- 四川省乐山市峨眉山市第二中学2025年高三4月联考物理试题含解析
- 营口市大石桥市2024-2025学年数学五年级第二学期期末达标测试试题含答案
- 专业技术人员聘用合同
- 2025版企业间服务与咨询合同范本
- 服务供应商合同范本
- 餐饮业食材供应合同模板
- 儿童歌曲钢琴简易伴奏编配 课件 第1-3章 和弦-五线谱、简谱互译
- 1生活在新型民主国家 公开课一等奖创新教学设计(表格式)
- 委托代签工程合同协议
- 无线网络优化技术探讨试题及答案
- 笔算加法(课件)-一年级下册数学人教版
- 2024年广东公需科目答案
- 小白兔拔萝卜课件
- 房树人心理画绘画分析(附图)-课件
- 2023年河南推拿职业学院单招考试面试模拟试题及答案解析
- 现代生物技术与人类健康课件
- 篮球裁判法(裁判手势)课件
- 辞职报告辞职信
- 2021年新湘教版九年级数学中考总复习教案
评论
0/150
提交评论