安徽省合肥市长丰2021-2022学年高三下学期第六次检测数学试卷含解析_第1页
安徽省合肥市长丰2021-2022学年高三下学期第六次检测数学试卷含解析_第2页
安徽省合肥市长丰2021-2022学年高三下学期第六次检测数学试卷含解析_第3页
安徽省合肥市长丰2021-2022学年高三下学期第六次检测数学试卷含解析_第4页
安徽省合肥市长丰2021-2022学年高三下学期第六次检测数学试卷含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022高考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知分别为双曲线的左、右焦点,点是其一条渐近线上一点,且以为直径的圆经过点,若的面积为,则双曲线的离心率为( )ABCD2已知集合,若,则实数的取值范围为( )ABCD3设,分别是中,所对边的边长,则直线与的位置关系是( )A平行B重合C垂直

2、D相交但不垂直4一个四面体所有棱长都是4,四个顶点在同一个球上,则球的表面积为( )ABCD5已知定点都在平面内,定点是内异于的动点,且,那么动点在平面内的轨迹是( )A圆,但要去掉两个点B椭圆,但要去掉两个点C双曲线,但要去掉两个点D抛物线,但要去掉两个点6在正方体中,点、分别为、的中点,过点作平面使平面,平面若直线平面,则的值为( )ABCD7函数(, , )的部分图象如图所示,则的值分别为( )A2,0B2, C2, D2, 8已知函数,其中为自然对数的底数,若存在实数,使成立,则实数的值为( )ABCD9设平面与平面相交于直线,直线在平面内,直线在平面内,且则“”是“”的( )A充分不

3、必要条件B必要不充分条件C充要条件D即不充分不必要条件10已知函数的图象与直线的相邻交点间的距离为,若定义,则函数,在区间内的图象是( )ABCD11已知定义在R上的函数(m为实数)为偶函数,记,则a,b,c的大小关系为( )ABCD12已知复数,则的虚部为( )A1BC1D二、填空题:本题共4小题,每小题5分,共20分。13四边形中,则的最小值是_.14已知数列的前项和公式为,则数列的通项公式为_15实数,满足约束条件,则的最大值为_.16 “六艺”源于中国周朝的贵族教育体系,具体包括“礼、乐、射、御、书、数”某校在周末学生业余兴趣活动中开展了“六艺”知识讲座,每艺安排一节,连排六节,则满足

4、“礼”与“乐”必须排在前两节,“射”和“御”两讲座必须相邻的不同安排种数为_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知函数()求函数的极值;()若,且,求证:18(12分)已知椭圆与x轴负半轴交于,离心率.(1)求椭圆C的方程;(2)设直线与椭圆C交于两点,连接AM,AN并延长交直线x=4于两点,若,直线MN是否恒过定点,如果是,请求出定点坐标,如果不是,请说明理由.19(12分)已知在平面直角坐标系中,曲线的参数方程为(为参数),以坐标原点为极点,轴的非负半轴为极轴且取相同的单位长度建立极坐标系,直线的极坐标方程为.(1)求直线的直角坐标方程;(2)求曲

5、线上的点到直线距离的最小值和最大值.20(12分)如图,平面四边形中,是上的一点,是的中点,以为折痕把折起,使点到达点的位置,且.(1)证明:平面平面;(2)求直线与平面所成角的正弦值.21(12分)已知函数(1)若,不等式的解集;(2)若,求实数的取值范围.22(10分)已知在中,角,的对边分别为,的面积为.(1)求证:;(2)若,求的值.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1B【解析】根据题意,设点在第一象限,求出此坐标,再利用三角形的面积即可得到结论.【详解】由题意,设点在第一象限,双曲线的一条渐近线方程为,所以,

6、又以为直径的圆经过点,则,即,解得,所以,即,即,所以,双曲线的离心率为.故选:B.【点睛】本题主要考查双曲线的离心率,解决本题的关键在于求出与的关系,属于基础题.2A【解析】解一元二次不等式化简集合的表示,求解函数的定义域化简集合的表示,根据可以得到集合、之间的关系,结合数轴进行求解即可.【详解】,.因为,所以有,因此有.故选:A【点睛】本题考查了已知集合运算的结果求参数取值范围问题,考查了解一元二次不等式,考查了函数的定义域,考查了数学运算能力.3C【解析】试题分析:由已知直线的斜率为,直线的斜率为,又由正弦定理得,故,两直线垂直考点:直线与直线的位置关系4A【解析】将正四面体补成正方体,

7、通过正方体的对角线与球的半径关系,求解即可【详解】解:如图,将正四面体补形成一个正方体,正四面体的外接球与正方体的外接球相同,四面体所有棱长都是4,正方体的棱长为,设球的半径为,则,解得,所以,故选:A【点睛】本题主要考查多面体外接球问题,解决本题的关键在于,巧妙构造正方体,利用正方体的外接球的直径为正方体的对角线,从而将问题巧妙转化,属于中档题5A【解析】根据题意可得,即知C在以AB为直径的圆上.【详解】,,,又,,平面,又平面,故在以为直径的圆上,又是内异于的动点,所以的轨迹是圆,但要去掉两个点A,B故选:A【点睛】本题主要考查了线面垂直、线线垂直的判定,圆的性质,轨迹问题,属于中档题.6

8、B【解析】作出图形,设平面分别交、于点、,连接、,取的中点,连接、,连接交于点,推导出,由线面平行的性质定理可得出,可得出点为的中点,同理可得出点为的中点,结合中位线的性质可求得的值.【详解】如下图所示:设平面分别交、于点、,连接、,取的中点,连接、,连接交于点,四边形为正方形,、分别为、的中点,则且,四边形为平行四边形,且,且,且,则四边形为平行四边形,平面,则存在直线平面,使得,若平面,则平面,又平面,则平面,此时,平面为平面,直线不可能与平面平行,所以,平面,平面,平面,平面平面,所以,四边形为平行四边形,可得,为的中点,同理可证为的中点,因此,.故选:B.【点睛】本题考查线段长度比值的

9、计算,涉及线面平行性质的应用,解答的关键就是找出平面与正方体各棱的交点位置,考查推理能力与计算能力,属于中等题.7D【解析】由题意结合函数的图象,求出周期,根据周期公式求出,求出,根据函数的图象过点,求出,即可求得答案【详解】由函数图象可知:,函数的图象过点,则故选【点睛】本题主要考查的是的图像的运用,在解答此类题目时一定要挖掘图像中的条件,计算三角函数的周期、最值,代入已知点坐标求出结果8A【解析】令f(x)g(x)=x+exa1n(x+1)+4eax,令y=xln(x+1),y=1=,故y=xln(x+1)在(1,1)上是减函数,(1,+)上是增函数,故当x=1时,y有最小值10=1,而e

10、xa+4eax4,(当且仅当exa=4eax,即x=a+ln1时,等号成立);故f(x)g(x)3(当且仅当等号同时成立时,等号成立);故x=a+ln1=1,即a=1ln1故选:A9A【解析】试题分析:, bm又直线a在平面内,所以ab,但直线不一定相交,所以“”是“ab”的充分不必要条件,故选A.考点:充分条件、必要条件.10A【解析】由题知,利用求出,再根据题给定义,化简求出的解析式,结合正弦函数和正切函数图象判断,即可得出答案.【详解】根据题意,的图象与直线的相邻交点间的距离为,所以 的周期为, 则, 所以,由正弦函数和正切函数图象可知正确.故选:A.【点睛】本题考查三角函数中正切函数的

11、周期和图象,以及正弦函数的图象,解题关键是对新定义的理解.11B【解析】根据f(x)为偶函数便可求出m0,从而f(x)1,根据此函数的奇偶性与单调性即可作出判断.【详解】解:f(x)为偶函数;f(x)f(x);11;|xm|xm|;(xm)2(xm)2;mx0;m0;f(x)1;f(x)在0,+)上单调递增,并且af(|)f(),bf(),cf(2);02;acb故选B【点睛】本题考查偶函数的定义,指数函数的单调性,对于偶函数比较函数值大小的方法就是将自变量的值变到区间0,+)上,根据单调性去比较函数值大小12A【解析】分子分母同乘分母的共轭复数即可.【详解】,故的虚部为.故选:A.【点睛】本

12、题考查复数的除法运算,考查学生运算能力,是一道容易题.二、填空题:本题共4小题,每小题5分,共20分。13【解析】在中利用正弦定理得出,进而可知,当时,取最小值,进而计算出结果.【详解】,如图,在中,由正弦定理可得,即,故当时,取到最小值为.故答案为:.【点睛】本题考查解三角形,同时也考查了常见的三角函数值,考查逻辑推理能力与计算能力,属于中档题14【解析】由题意,根据数列的通项与前n项和之间的关系,即可求得数列的通项公式【详解】由题意,可知当时,;当时,. 又因为不满足,所以.【点睛】本题主要考查了利用数列的通项与前n项和之间的关系求解数列的通项公式,其中解答中熟记数列的通项与前n项和之间的

13、关系,合理准确推导是解答的关键,着重考查了推理与运算能力,属于基础题1510【解析】画出可行域,根据目标函数截距可求.【详解】解:作出可行域如下:由得,平移直线,当经过点时,截距最小,最大解得的最大值为10故答案为:10【点睛】考查可行域的画法及目标函数最大值的求法,基础题.16【解析】分步排课,首先将“礼”与“乐”排在前两节,然后,“射”和“御”捆绑一一起作为一个元素与其它两个元素合起来全排列,同时它们内部也全排列【详解】第一步:先将“礼”与“乐”排在前两节,有种不同的排法;第二步:将“射”和“御”两节讲座捆绑再和其他两艺全排有种不同的排法,所以满足“礼”与“乐”必须排在前两节,“射”和“御

14、”两节讲座必须相邻的不同安排种数为故答案为:1【点睛】本题考查排列的应用,排列组合问题中,遵循特殊元素特殊位置优先考虑的原则,相邻问题用捆绑法,不相邻问题用插入法三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17 ()极大值为:,无极小值;()见解析.【解析】()求出函数的导数,解关于导函数的不等式,求出函数的单调区间即可求出函数的极值;()得到,根据函数的单调性问题转化为证明,即证,令,根据函数的单调性证明即可【详解】() 的定义域为且令,得;令,得在上单调递增,在上单调递减函数的极大值为,无极小值(), ,即由()知在上单调递增,在上单调递减且,则要证,即证,即证,即证即证

15、由于,即,即证令则 恒成立 在递增在恒成立【点睛】本题考查了函数的单调性、最值问题,考查导数的应用以及分类讨论思想,转化思想,考查不等式的证明,考查运算求解能力及化归与转化思想,关键是能够构造出合适的函数,将问题转化为函数最值的求解问题,属于难题18(1)(2)直线恒过定点,详见解析【解析】(1)依题意由椭圆的简单性质可求出,即得椭圆C的方程;(2)设直线的方程为:,联立直线的方程与椭圆方程可求得点的坐标,同理可求出点的坐标,根据的坐标可求出直线的方程,将其化简成点斜式,即可求出定点坐标【详解】(1)由题有,.,.椭圆方程为.(2)设直线的方程为:,则或,同理,当时,由有.,同理,又,当时,直

16、线的方程为直线恒过定点,当时,此时也过定点.综上:直线恒过定点.【点睛】本题主要考查利用椭圆的简单性质求椭圆的标准方程,以及直线与椭圆的位置关系应用,定点问题的求法等,意在考查学生的逻辑推理能力和数学运算能力,属于难题19(1)(2)最大值;最小值.【解析】(1)结合极坐标和直角坐标的互化公式可得;(2)利用参数方程,求解点到直线的距离公式,结合三角函数知识求解最值.【详解】解:(1)因为,代入,可得直线的直角坐标方程为.(2)曲线上的点到直线的距离,其中,.故曲线上的点到直线距离的最大值,曲线上的点到直线的距离的最小值.【点睛】本题主要考查极坐标和直角坐标的转化及最值问题,椭圆上的点到直线的

17、距离的最值求解优先考虑参数方法,侧重考查数学运算的核心素养.20(1)见解析;(2)【解析】(1)要证平面平面,只需证平面,而,所以只需证,而由已知的数据可证得为等边三角形,又由于是的中点,所以,从而可证得结论;(2)由于在中,而平面平面,所以点在平面的投影恰好为的中点,所以如图建立空间直角坐标系,利用空间向量求解.【详解】(1)由,所以平面四边形为直角梯形,设,因为.所以在中,则,又,所以,由,所以为等边三角形,又是的中点,所以,又平面,则有平面,而平面,故平面平面.(2)解法一:在中,取中点,所以,由(1)可知平面平面,平面平面,所以平面,以为坐标原点,方向为轴方向,建立如图所示的空间直角

18、坐标系,则,设平面的法向量,由得取,则设直线与平面所成角大小为,则,故直线与平面所成角的正弦值为. 解法二:在中,取中点,所以,由(1)可知平面平面,平面平面,所以平面,过作于,连,则由平面平面,所以,又,则平面,又平面所以,在中,所以,设到平面的距离为,由,即,即,可得,设直线与平面所成角大小为,则.故直线与平面所成角的正弦值为.【点睛】此题考查的是立体几何中的证明面面垂直和求线面角,考查学生的转化思想和计算能力,属于中档题.21(1)(2)【解析】(1)依题意可得,再用零点分段法分类讨论可得;(2)依题意可得对恒成立,根据绝对值的几何意义将绝对值去掉,分别求出解集,则两解集的并集为,得到不等式即

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论