版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知数列是公差为的等差数列,且成等比数列,则( )A4B3C2D12已知双曲线的实轴长为,离心率为,、分别为双曲线的左、右焦点,点在双曲线上运动,若为锐角三角形,则的取值范围是( )ABCD3已知集合A0,1,B0,1,2,则满足ACB的集合
2、C的个数为()A4B3C2D14设是虚数单位,则( )ABC1D25双曲线:(,)的一个焦点为(),且双曲线的两条渐近线与圆:均相切,则双曲线的渐近线方程为( )ABCD6已知满足,则的取值范围为( )ABCD7在一个数列中,如果,都有(为常数),那么这个数列叫做等积数列,叫做这个数列的公积.已知数列是等积数列,且,公积为,则( )ABCD8在展开式中的常数项为A1B2C3D79盒中有6个小球,其中4个白球,2个黑球,从中任取个球,在取出的球中,黑球放回,白球则涂黑后放回,此时盒中黑球的个数,则( )A,B,C,D,10在中,角所对的边分别为,已知,则( )A或BCD或11的内角的对边分别为,
3、若,则内角( )ABCD12如图,在棱长为4的正方体中,E,F,G分别为棱 AB,BC,的中点,M为棱AD的中点,设P,Q为底面ABCD内的两个动点,满足平面EFG,则的最小值为( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13将含有甲、乙、丙的6人平均分成两组参加“文明交通”志愿者活动,其中一组指挥交通,一组分发宣传资料,则甲、乙至少一人参加指挥交通且甲、丙不在同一个组的概率为_.14(5分)已知曲线的方程为,其图象经过点,则曲线在点处的切线方程是_15已知x,y满足约束条件x-y-10 x+y-302y+10,则z=2x-y的最小值为_16在平面直角坐标系中,点在单位圆上,
4、设,且若,则的值为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知曲线的参数方程为为参数, 曲线的参数方程为为参数).(1)求与的普通方程;(2)若与相交于,两点,且,求的值.18(12分)已知函数.(1)解不等式;(2)若,求证:.19(12分)在直角坐标系中,已知点,若以线段为直径的圆与轴相切.(1)求点的轨迹的方程;(2)若上存在两动点(A,B在轴异侧)满足,且的周长为,求的值.20(12分)已知正实数满足 .(1)求 的最小值.(2)证明:21(12分)某保险公司给年龄在岁的民众提供某种疾病的一年期医疗保险,现从名参保人员中随机抽取名作为样本进行分析
5、,按年龄段分成了五组,其频率分布直方图如下图所示;参保年龄与每人每年应交纳的保费如下表所示. 据统计,该公司每年为这一万名参保人员支出的各种费用为一百万元.年龄(单位:岁)保费(单位:元)(1)用样本的频率分布估计总体分布,为使公司不亏本,求精确到整数时的最小值;(2)经调查,年龄在之间的老人每人中有人患该项疾病(以此频率作为概率).该病的治疗费为元,如果参保,保险公司补贴治疗费元.某老人年龄岁,若购买该项保险(取中的).针对此疾病所支付的费用为元;若没有购买该项保险,针对此疾病所支付的费用为元.试比较和的期望值大小,并判断该老人购买此项保险是否划算?22(10分)已知椭圆,上、下顶点分别是、
6、,上、下焦点分别是、,焦距为,点在椭圆上.(1)求椭圆的方程;(2)若为椭圆上异于、的动点,过作与轴平行的直线,直线与交于点,直线与直线交于点,判断是否为定值,说明理由.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1A【解析】根据等差数列和等比数列公式直接计算得到答案.【详解】由成等比数列得,即,已知,解得.故选:.【点睛】本题考查了等差数列,等比数列的基本量的计算,意在考查学生的计算能力.2A【解析】由已知先确定出双曲线方程为,再分别找到为直角三角形的两种情况,最后再结合即可解决.【详解】由已知可得,所以,从而双曲线方程为,不
7、妨设点在双曲线右支上运动,则,当时,此时,所以,所以;当轴时,所以,又为锐角三角形,所以.故选:A.【点睛】本题考查双曲线的性质及其应用,本题的关键是找到为锐角三角形的临界情况,即为直角三角形,是一道中档题.3A【解析】由可确定集合中元素一定有的元素,然后列出满足题意的情况,得到答案.【详解】由可知集合中一定有元素2,所以符合要求的集合有,共4种情况,所以选A项.【点睛】考查集合并集运算,属于简单题.4C【解析】由,可得,通过等号左右实部和虚部分别相等即可求出的值.【详解】解:, ,解得:.故选:C.【点睛】本题考查了复数的运算,考查了复数相等的涵义.对于复数的运算类问题,易错点是把 当成进行
8、运算.5A【解析】根据题意得到,化简得到,得到答案.【详解】根据题意知:焦点到渐近线的距离为,故,故渐近线为.故选:.【点睛】本题考查了直线和圆的位置关系,双曲线的渐近线,意在考查学生的计算能力和转化能力.6C【解析】设,则的几何意义为点到点的斜率,利用数形结合即可得到结论.【详解】解:设,则的几何意义为点到点的斜率,作出不等式组对应的平面区域如图:由图可知当过点的直线平行于轴时,此时成立;取所有负值都成立;当过点时,取正值中的最小值,此时;故的取值范围为;故选:C.【点睛】本题考查简单线性规划的非线性目标函数函数问题,解题时作出可行域,利用目标函数的几何意义求解是解题关键对于直线斜率要注意斜
9、率不存在的直线是否存在7B【解析】计算出的值,推导出,再由,结合数列的周期性可求得数列的前项和.【详解】由题意可知,则对任意的,则,由,得,因此,.故选:B.【点睛】本题考查数列求和,考查了数列的新定义,推导出数列的周期性是解答的关键,考查推理能力与计算能力,属于中等题.8D【解析】求出展开项中的常数项及含的项,问题得解。【详解】展开项中的常数项及含的项分别为:,,所以展开式中的常数项为:.故选:D【点睛】本题主要考查了二项式定理中展开式的通项公式及转化思想,考查计算能力,属于基础题。9C【解析】根据古典概型概率计算公式,计算出概率并求得数学期望,由此判断出正确选项.【详解】表示取出的为一个白
10、球,所以.表示取出一个黑球,所以.表示取出两个球,其中一黑一白,表示取出两个球为黑球,表示取出两个球为白球,所以.所以,.故选:C【点睛】本小题主要考查离散型随机变量分布列和数学期望的计算,属于中档题.10D【解析】根据正弦定理得到,化简得到答案.【详解】由,得,或,或故选:【点睛】本题考查了正弦定理解三角形,意在考查学生的计算能力.11C【解析】由正弦定理化边为角,由三角函数恒等变换可得【详解】,由正弦定理可得,三角形中,故选:C【点睛】本题考查正弦定理,考查两角和的正弦公式和诱导公式,掌握正弦定理的边角互化是解题关键12C【解析】把截面画完整,可得在上,由知在以为圆心1为半径的四分之一圆上
11、,利用对称性可得的最小值【详解】如图,分别取的中点,连接,易证共面,即平面为截面,连接,由中位线定理可得,平面,平面,则平面,同理可得平面,由可得平面平面,又平面EFG,在平面上,正方体中平面,从而有,在以为圆心1为半径的四分之一圆(圆在正方形内的部分)上,显然关于直线的对称点为,当且仅当共线时取等号,所求最小值为故选:C【点睛】本题考查空间距离的最小值问题,解题时作出正方体的完整截面求出点轨迹是第一个难点,第二个难点是求出点轨迹,第三个难点是利用对称性及圆的性质求得最小值二、填空题:本题共4小题,每小题5分,共20分。13【解析】先求出总的基本事件数,再求出甲、乙至少一人参加指挥交通且甲、丙
12、不在同一组的基本事件数,然后根据古典概型求解【详解】6人平均分成两组参加“文明交通”志愿者活动,其中一组指挥交通,一组分发宣传资料的基本事件总数共有个,甲、乙至少一人参加指挥交通且甲、丙不在同一组的基本事件个数有:个,所以甲、乙至少一人参加指挥交通且甲、丙不在同一组的概率为.故答案为:【点睛】本题主要考查概率的求法,考查古典概型、排列组合等基础知识,考查运算求解能力,是中档题.14【解析】依题意,将点的坐标代入曲线的方程中,解得.由,得,则曲线在点处切线的斜率,所以在点处的切线方程是,即1532【解析】先根据约束条件画出可行域,再由y=2x-z表示直线在y轴上的截距最大即可得解.【详解】x,y
13、满足约束条件x-y-10 x+y-302y+10,画出可行域如图所示.目标函数z=2x-y,即y=2x-z.平移直线y=2x-z,截距最大时即为所求.2y+1=0 x-y-1=0点A(12,-12),z在点A处有最小值:z212+12=32,故答案为:32.【点睛】本题主要考查线性规划的基本应用,利用数形结合,结合目标函数的几何意义是解决此类问题的基本方法16【解析】根据三角函数定义表示出,由同角三角函数关系式结合求得,而,展开后即可由余弦差角公式求得的值.【详解】点在单位圆上,设,由三角函数定义可知,因为,则,所以由同角三角函数关系式可得,所以 故答案为:.【点睛】本题考查了三角函数定义,同
14、角三角函数关系式的应用,余弦差角公式的应用,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(1),(2)0【解析】(1)分别把两曲线参数方程中的参数消去,即可得到普通方程;(2)把直线的参数方程代入的普通方程,化为关于的一元二次方程,再由根与系数的关系及此时的几何意义求解【详解】(1)由曲线的参数方程为为参数),消去参数,可得;由曲线的参数方程为为参数),消去参数,可得,即(2)把为参数)代入,得,解得:,即,满足【点睛】本题考查参数方程化普通方程,特别是直线参数方程中参数的几何意义的应用,是中档题18(1);(2)证明见解析.【解析】(1)分、三种情况解不等式
15、,即可得出该不等式的解集;(2)利用分析法可知,要证,即证,只需证明即可,因式分解后,判断差值符号即可,由此证明出所证不等式成立.【详解】(1).当时,由,解得,此时;当时,不成立;当时,由,解得,此时.综上所述,不等式的解集为;(2)要证,即证,因为,所以,.所以,.故所证不等式成立.【点睛】本题考查绝对值不等式的求解,同时也考查了利用分析法和作差法证明不等式,考查分类讨论思想以及推理能力,属于中等题.19(1);(2)【解析】(1)设,则由题设条件可得,化简后可得轨迹的方程.(2)设直线,联立直线方程和抛物线方程后利用韦达定理化简并求得,结合焦半径公式及弦长公式可求的值及的长.【详解】(1
16、)设,则圆心的坐标为,因为以线段为直径的圆与轴相切,所以,化简得的方程为.(2)由题意,设直线,联立得,设 (其中)所以,且,因为,所以,所以,故或 (舍),直线,因为的周长为所以.即,因为.又,所以,解得,所以.【点睛】本题考查曲线方程以及抛物线中的弦长计算,还涉及到向量的数量积.一般地,抛物线中的弦长问题,一般可通过联立方程组并消元得到关于或的一元二次方程,再把已知等式化为关于两个的交点横坐标或纵坐标的关系式,该关系中含有或,最后利用韦达定理把关系式转化为某一个变量的方程.本题属于中档题.20(1);(2)见解析【解析】(1)利用乘“1”法,结合基本不等式求得结果.(2)直接利用基本不等式
17、及乘“1”法,证明即可.【详解】(1)因为 ,所以 因为 ,所以 (当且仅当 ,即 时等号成立),所以(2)证明:因为 ,所以 故 (当且仅当 时,等号成立)【点睛】本题考查了基本不等式的应用,考查了乘“1”法的技巧,考查了推理论证能力,属于中档题.21(1)30;(2),比较划算.【解析】(1)由频率和为1求出,根据的值求出保费的平均值,然后解一元一次不等式 即可求出结果,最后取近似值即可;(2)分别计算参保与不参保时的期望,比较大小即可.【详解】解:(1)由,解得.保险公司每年收取的保费为:要使公司不亏本,则,即解得.(2)若该老人购买了此项保险,则的取值为(元).若该老人没有购买此项保险,则的取值为.(元).年龄为的该老人购买此项保险比较划算.【点睛】本题考查学生利用相关统计图表知识处理实际问题的能力,掌握频率分布直方图的基本性质,知道数学期望是平均数的另一种数学语言,为容易题.22(1);
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度Logo设计及品牌形象重塑合同
- 家具供应合同范本
- 2024简单的农村土地转让合同
- 二手房交易合同-范本
- 2024上市公司合同管理办法
- 标准店面租赁合同书样本
- 2024内粉墙刷白合同
- 2024年借款延期合同范本
- 2024墙纸采购合同
- 2024小区绿化种植合同
- XXX200MW光伏发电项目施工组织设计
- 2024-2030年中国氦液化系统市场深度调查与未来发展前景预测研究报告
- 2024年历年中级经济师工商管理考试真题及答案
- 2024年感动中国年度人物介绍颁奖典礼
- 肋骨骨折讲课课件
- 2024年军队文职人员招聘考试公共科目真题
- 金川公司社会招聘试题
- 青岛版五年级数学上册竖式计算题100道及答案
- 幼儿园食品安全追溯管理制度
- 高级养老护理员试题与答案
- 《我的家乡南京》课件
评论
0/150
提交评论