




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知正四面体的棱长为,是该正四面体外接球球心,且,则( )ABCD2在四边形中,点在线段的延长线上,且,点在边所在直线上,则的最大值为( )ABCD3已知数列an满足:an
2、=2,n5a1a2an-1-1,n6nN*.若正整数k(k5)使得a12+a22+ak2=a1a2ak成立,则k=( )A16B17C18D194中国古代数学著作孙子算经中有这样一道算术题:“今有物不知其数,三三数之余二,五五数之余三,问物几何?”人们把此类题目称为“中国剩余定理”,若正整数除以正整数后的余数为,则记为,例如现将该问题以程序框图的算法给出,执行该程序框图,则输出的等于( )ABCD5在直角坐标系中,已知A(1,0),B(4,0),若直线x+my1=0上存在点P,使得|PA|=2|PB|,则正实数m的最小值是( )AB3CD6设,分别是中,所对边的边长,则直线与的位置关系是( )
3、A平行B重合C垂直D相交但不垂直7若复数满足,则的虚部为( )A5BCD-58框图与程序是解决数学问题的重要手段,实际生活中的一些问题在抽象为数学模型之后,可以制作框图,编写程序,得到解决,例如,为了计算一组数据的方差,设计了如图所示的程序框图,其中输入,则图中空白框中应填入( )A,BC,D,9已知双曲线的焦距为,过左焦点作斜率为1的直线交双曲线的右支于点,若线段的中点在圆上,则该双曲线的离心率为( )ABCD10设函数,则,的大致图象大致是的( )ABCD11若复数,其中为虚数单位,则下列结论正确的是( )A的虚部为BC的共轭复数为D为纯虚数12已知函数f(x)sin2x+sin2(x),
4、则f(x)的最小值为( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13函数在上的最小值和最大值分别是_14点P是ABC所在平面内一点且在ABC内任取一点,则此点取自PBC内的概率是_15函数在区间(-,1)上递增,则实数a的取值范围是_16某陶瓷厂准备烧制甲、乙、丙三件不同的工艺品,制作过程必须先后经过两次烧制,当第一次烧制合格后方可进入第二次烧制,再次烧制过程相互独立.根据该厂现有的技术水平,经过第一次烧制后,甲、乙、丙三件产品合格的概率依次为0.5、0.6、0.4,经过第二次烧制后,甲、乙、丙三件产品合格的概率依次为0.6、0.5、0.75;则第一次烧制后恰有一件产品合格的
5、概率为_;经过前后两次烧制后,合格工艺品的件数为,则随机变量的期望为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知等差数列an,和等比数列bn满足:a1=b1=1,bnN*,a2+a4+a9=3b3,3ab3=b5-30.(I)求数列an和bn的通项公式;(II)求数列n2anan+1的前n项和Sn.18(12分)在平面直角坐标系中,以原点为极点,轴的正半轴为极轴建立极坐标系,已知曲线:.过点的直线:(为参数)与曲线相交于,两点.(1)求曲线的直角坐标方程和直线的普通方程;(2)若,求实数的值.19(12分)已知数列满足,其前n项和为.(1)通过计算,猜想
6、并证明数列的通项公式;(2)设数列满足,若数列是单调递减数列,求常数t的取值范围.20(12分)设函数(1)当时,解不等式;(2)设,且当时,不等式有解,求实数的取值范围21(12分)若不等式在时恒成立,则的取值范围是_.22(10分)在中,角,所对的边分别为,已知,角为锐角,的面积为.(1)求角的大小;(2)求的值.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1A【解析】如图设平面,球心在上,根据正四面体的性质可得,根据平面向量的加法的几何意义,重心的性质,结合已知求出的值.【详解】如图设平面,球心在上,由正四面体的性质可得:
7、三角形是正三角形,在直角三角形中,因为为重心,因此,则,因此,因此,则,故选A.【点睛】本题考查了正四面体的性质,考查了平面向量加法的几何意义,考查了重心的性质,属于中档题.2A【解析】依题意,如图以为坐标原点建立平面直角坐标系,表示出点的坐标,根据求出的坐标,求出边所在直线的方程,设,利用坐标表示,根据二次函数的性质求出最大值.【详解】解:依题意,如图以为坐标原点建立平面直角坐标系,由,因为点在线段的延长线上,设,解得,所在直线的方程为 因为点在边所在直线上,故设当时故选:【点睛】本题考查向量的数量积,关键是建立平面直角坐标系,属于中档题.3B【解析】由题意可得a1=a2=a3=a4=a5=
8、2,a6=a1a2a3a5-1=25-1=31,n6时,a1a2an-1=1+an,将n换为n+1,两式相除,an2=an+1-an+1,n6,累加法求得a62+a72+ak2=ak+1-a6+k-5即有a12+a22+ak2=20+ak+1-a6+k-5=ak+1+k-16,结合条件,即可得到所求值【详解】解:an=2,n5a1a2an-1-1,n6(nN*),即a1=a2=a3=a4=a5=2,a6=a1a2a3a5-1=25-1=31,n6时,a1a2an-1=1+an,a1a2an=1+an+1,两式相除可得1+an+11+an=an,则an2=an+1-an+1,n6,由a62=a7
9、-a6+1,a72=a8-a7+1,ak2=ak+1-ak+1,k5,可得a62+a72+ak2=ak+1-a6+k-5a12+a22+ak2=20+ak+1-a6+k-5=ak+1+k-16,且a1a2ak=1+ak+1,正整数k(k5)时,要使得a12+a22+ak2=a1a2ak成立,则ak+1+k-16=ak+1+1,则k=17,故选:B【点睛】本题考查与递推数列相关的方程的整数解的求法,注意将题设中的递推关系变形得到新的递推关系,从而可简化与数列相关的方程,本题属于难题.4C【解析】从21开始,输出的数是除以3余2,除以5余3,满足条件的是23,故选C.5D【解析】设点,由,得关于的
10、方程.由题意,该方程有解,则,求出正实数m的取值范围,即求正实数m的最小值.【详解】由题意,设点.,即,整理得,则,解得或.故选:.【点睛】本题考查直线与方程,考查平面内两点间距离公式,属于中档题.6C【解析】试题分析:由已知直线的斜率为,直线的斜率为,又由正弦定理得,故,两直线垂直考点:直线与直线的位置关系7C【解析】把已知等式变形,再由复数代数形式的乘除运算化简得答案【详解】由(1+i)z|3+4i|,得z,z的虚部为故选C【点睛】本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题8A【解析】依题意问题是,然后按直到型验证即可.【详解】根据题意为了计算7个数的方差,即输出的,观察
11、程序框图可知,应填入,故选:A.【点睛】本题考查算法与程序框图,考查推理论证能力以及转化与化归思想,属于基础题.9C【解析】设线段的中点为,判断出点的位置,结合双曲线的定义,求得双曲线的离心率.【详解】设线段的中点为,由于直线的斜率是,而圆,所以.由于是线段的中点,所以,而,根据双曲线的定义可知,即,即.故选:C【点睛】本小题主要考查双曲线的定义和离心率的求法,考查直线和圆的位置关系,考查数形结合的数学思想方法,属于中档题.10B【解析】采用排除法:通过判断函数的奇偶性排除选项A;通过判断特殊点的函数值符号排除选项D和选项C即可求解.【详解】对于选项A:由题意知,函数的定义域为,其关于原点对称
12、,因为,所以函数为奇函数,其图象关于原点对称,故选A排除;对于选项D:因为,故选项D排除;对于选项C:因为,故选项C排除;故选:B【点睛】本题考查利用函数的奇偶性和特殊点函数值符号判断函数图象;考查运算求解能力和逻辑推理能力;选取合适的特殊点并判断其函数值符号是求解本题的关键;属于中档题、常考题型.11D【解析】将复数整理为的形式,分别判断四个选项即可得到结果.【详解】的虚部为,错误;,错误;,错误;,为纯虚数,正确本题正确选项:【点睛】本题考查复数的模长、实部与虚部、共轭复数、复数的分类的知识,属于基础题.12A【解析】先通过降幂公式和辅助角法将函数转化为,再求最值.【详解】已知函数f(x)
13、sin2x+sin2(x),=,=,因为,所以f(x)的最小值为.故选:A【点睛】本题主要考查倍角公式及两角和与差的三角函数的逆用,还考查了运算求解的能力,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13【解析】求导,研究函数单调性,分析,即得解【详解】由题意得,令,解得,令,解得.在上递减,在递增,而,故在区间上的最小值和最大值分别是故答案为:【点睛】本题考查了导数在函数最值的求解中的应用,考查了学生综合分析,转化划归,数学运算的能力,属于中档题14【解析】设是中点,根据已知条件判断出三点共线且是线段靠近的三等分点,由此求得,结合几何概型求得点取自三角形的概率.【详解】设是中
14、点,因为,所以,所以三点共线且点是线段靠近的三等分点,故,所以此点取自内的概率是故答案为:【点睛】本小题主要考查三点共线的向量表示,考查几何概型概率计算,属于基础题.15【解析】根据复合函数单调性同增异减,结合二次函数的性质、对数型函数的定义域列不等式组,解不等式求得的取值范围.【详解】由二次函数的性质和复合函数的单调性可得解得.故答案为:【点睛】本小题主要考查根据对数型复合函数的单调性求参数的取值范围,属于基础题.160.38 0.9 【解析】考虑恰有一件的三种情况直接计算得到概率,随机变量的可能取值为,计算得到概率,再计算数学期望得到答案.【详解】第一次烧制后恰有一件产品合格的概率为:.甲
15、、乙、丙三件产品合格的概率分别为:,.故随机变量的可能取值为,故;.故.故答案为:0.38 ;0.9.【点睛】本题考查了概率的计算,数学期望,意在考查学生的计算能力和应用能力.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17 (I) an=2n-1,bn=3n-1;(II)n2+n22n+1【解析】(I)直接利用等差数列,等比数列公式联立方程计算得到答案.(II) n2anan+1=14+1812n-1-12n+1,利用裂项相消法计算得到答案.【详解】(I) a1=b1=1,a2+a4+a9=3b3,3ab3=b5-30,故3+12d=3q231+q2-1d=q4-30,解得
16、d=2q=3,故an=2n-1,bn=3n-1.(II)n2anan+1=n22n-12n+1=n24n2-1=14+1412n-12n+1=14+1812n-1-12n+1,故Sn=n4+181-12n+1=n2+n22n+1.【点睛】本题考查了等差数列,等比数列,裂项求和,意在考查学生对于数列公式方法的综合应用.18(1),;(2).【解析】(1)将代入求解,由(为参数)消去即可.(2)将(为参数)与联立得,设,两点对应的参数为,则,再根据,即,利用韦达定理求解.【详解】(1)把代入,得,由(为参数),消去得,曲线的直角坐标方程和直线的普通方程分别是,.(2)将(为参数)代入得,设,两点对
17、应的参数为,则,由得,所以,即,所以,而,解得.【点睛】本题主要考查参数方程、极坐标方程、直角坐标方程的转化和直线参数方程的应用,还考查了运算求解的能力,属于中档题.19(1),证明见解析;(2)【解析】(1)首先利用赋值法求出的值,进一步利用定义求出数列的通项公式;(2)首先利用叠乘法求出数列的通项公式,进一步利用数列的单调性和基本不等式的应用求出参数的范围【详解】(1)数列满足,其前项和为所以,则,所以猜想得:证明:由于,所以,则:(常数),所以数列是首项为1,公差为的等差数列所以,整理得(2)数列满足,所以,则,所以则,所以,所以,整理得,由于,所以,即【点睛】本题考查的知识要点:数列的
18、通项公式的求法及应用,叠乘法的应用,函数的单调性在数列中的应用,基本不等式的应用,主要考察学生的运算能力和转换能力,属于中档题型20(1);(2).【解析】(1)通过分类讨论去掉绝对值符号,进而解不等式组求得结果;(2)将不等式整理为,根据能成立思想可知,由此构造不等式求得结果.【详解】(1)当时,可化为,由,解得;由,解得;由,解得综上所述:所以原不等式的解集为(2),有解,即,又,实数的取值范围是【点睛】本题考查绝对值不等式的求解、根据不等式有解求解参数范围的问题;关键是明确对于不等式能成立的问题,通过分离变量的方式将问题转化为所求参数与函数最值之间的比较问题.21【解析】原不等式等价于在恒成立,令,求出在上的最小值后可得的取值范围.【详解】因为在时恒成立,故在恒成立.令,由可得.令,则为上的增函数,故.故.故答案为:.【点睛】本题考
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二级MS Office考试的注意事项试题及答案
- 2025塑料原料买卖合同范本
- 初级社会工作者情境反应能力测试试题及答案
- 2025合同管理综合法律服务合同(标准版)
- 三基考试题库及答案放射
- 2025年工艺气体压缩机项目立项申请报告
- 沿河县试题及答案
- 2024-2025学年高中历史暑假作业10中国特色社会主义建设和近现代社会生活的变迁含解析
- 系统分析师考试内容一览及试题及答案
- 2025建筑材料购销合同范本模板
- 2024山西省文化旅游投资控股集团有限公司招聘笔试参考题库附带答案详解
- 国家开放大学《客户关系管理实务》形考任务1-4参考答案
- (2024年)幼儿园营养膳食
- 放疗过程科普知识讲座
- (高清版)DZT 0270-2014 地下水监测井建设规范
- 初级韩国语智慧树知到期末考试答案2024年
- TIBAIIPLUS金融计算器使用实例
- 动物园装修与动物笼舍设计
- 曲靖市旅游行业研究报告
- 枸橼酸钠血滤置换液-药品临床应用解读
- 新能源汽车热泵空调原理(教案)
评论
0/150
提交评论