2022年河北省邢台高考数学三模试卷含解析_第1页
2022年河北省邢台高考数学三模试卷含解析_第2页
2022年河北省邢台高考数学三模试卷含解析_第3页
2022年河北省邢台高考数学三模试卷含解析_第4页
2022年河北省邢台高考数学三模试卷含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022高考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知当,时,则以下判断正确的是 ABCD与的大小关系不确定2在空间直角坐标系中,四面体各顶点坐标分别为:假设蚂蚁窝

2、在点,一只蚂蚁从点出发,需要在,上分别任意选择一点留下信息,然后再返回点那么完成这个工作所需要走的最短路径长度是( )ABCD3已知是偶函数,在上单调递减,则的解集是ABCD4大衍数列,米源于我国古代文献乾坤谱中对易传“大衍之数五十”的推论,主要用于解释我国传统文化中的太极衍生原理,数列中的每一项,都代表太极衍生过程中,曾经经历过的两仪数量总和.已知该数列前10项是0,2,4,8,12,18,24,32,40,50,则大衍数列中奇数项的通项公式为( )ABCD5()ABCD6已知全集,函数的定义域为,集合,则下列结论正确的是ABCD7已知底面为正方形的四棱锥,其一条侧棱垂直于底面,那么该四棱锥

3、的三视图可能是下列各图中的( )ABCD8已知复数z满足,则z的虚部为( )ABiC1D19已知双曲线的右焦点为,过原点的直线与双曲线的左、右两支分别交于两点,延长交右支于点,若,则双曲线的离心率是( )ABCD10在复平面内,复数对应的点位于( )A第一象限B第二象限C第三象限D第四象限11双曲线x2a2-y2b2=1(a0,b0)的离心率为3,则其渐近线方程为Ay=2xBy=3xCy=22xDy=32x12年部分省市将实行“”的新高考模式,即语文、数学、英语三科必选,物理、历史二选一,化学、生物、政治、地理四选二,若甲同学选科没有偏好,且不受其他因素影响,则甲同学同时选择历史和化学的概率为

4、ABCD二、填空题:本题共4小题,每小题5分,共20分。13正四棱柱中,.若是侧面内的动点,且,则与平面所成角的正切值的最大值为_.14如图,半球内有一内接正四棱锥,该四棱锥的体积为,则该半球的体积为_. 15若一组样本数据7,9,8,10的平均数为9,则该组样本数据的方差为_.16已知向量=(1,2),=(-3,1),则=_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)如图,在四棱锥PABCD中,PA平面ABCD,ABCBAD90,ADAP4,ABBC2,M为PC的中点(1)求异面直线AP,BM所成角的余弦值;(2)点N在线段AD上,且AN,若直线MN与平面PB

5、C所成角的正弦值为,求的值18(12分)在中,角的对边分别为,已知(1)求角的大小;(2)若,求的面积19(12分)如图,在斜三棱柱中,已知为正三角形,D,E分别是,的中点,平面平面,.(1)求证:平面;(2)求证:平面.20(12分)某商场举行有奖促销活动,顾客购买每满元的商品即可抽奖一次.抽奖规则如下:抽奖者掷各面标有点数的正方体骰子次,若掷得点数大于,则可继续在抽奖箱中抽奖;否则获得三等奖,结束抽奖,已知抽奖箱中装有个红球与个白球,抽奖者从箱中任意摸出个球,若个球均为红球,则获得一等奖,若个球为个红球和个白球,则获得二等奖,否则,获得三等奖(抽奖箱中的所有小球,除颜色外均相同).若,求顾

6、客参加一次抽奖活动获得三等奖的概率;若一等奖可获奖金元,二等奖可获奖金元,三等奖可获奖金元,记顾客一次抽奖所获得的奖金为,若商场希望的数学期望不超过元,求的最小值.21(12分)已知圆O经过椭圆C:的两个焦点以及两个顶点,且点在椭圆C上求椭圆C的方程;若直线l与圆O相切,与椭圆C交于M、N两点,且,求直线l的倾斜角22(10分)选修4-4:坐标系与参数方程:在平面直角坐标系中,曲线:(为参数),在以平面直角坐标系的原点为极点、轴的正半轴为极轴,且与平面直角坐标系取相同单位长度的极坐标系中,曲线:.(1)求曲线的普通方程以及曲线的平面直角坐标方程;(2)若曲线上恰好存在三个不同的点到曲线的距离相

7、等,求这三个点的极坐标.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1C【解析】由函数的增减性及导数的应用得:设,求得可得为增函数,又,时,根据条件得,即可得结果【详解】解:设,则,即为增函数,又,即,所以,所以故选:C【点睛】本题考查了函数的增减性及导数的应用,属中档题2C【解析】将四面体沿着劈开,展开后最短路径就是的边,在中,利用余弦定理即可求解.【详解】将四面体沿着劈开,展开后如下图所示:最短路径就是的边易求得,由,知,由余弦定理知其中,故选:C【点睛】本题考查了余弦定理解三角形,需熟记定理的内容,考查了学生的空间想象能力

8、,属于中档题.3D【解析】先由是偶函数,得到关于直线对称;进而得出单调性,再分别讨论和,即可求出结果.【详解】因为是偶函数,所以关于直线对称;因此,由得;又在上单调递减,则在上单调递增;所以,当即时,由得,所以,解得;当即时,由得,所以,解得;因此,的解集是.【点睛】本题主要考查由函数的性质解对应不等式,熟记函数的奇偶性、对称性、单调性等性质即可,属于常考题型.4B【解析】直接代入检验,排除其中三个即可【详解】由题意,排除D,排除A,C同时B也满足,故选:B【点睛】本题考查由数列的项选择通项公式,解题时可代入检验,利用排除法求解5B【解析】利用复数代数形式的乘除运算化简得答案【详解】故选B【点

9、睛】本题考查复数代数形式的乘除运算,考查了复数的基本概念,是基础题6A【解析】求函数定义域得集合M,N后,再判断【详解】由题意,故选A【点睛】本题考查集合的运算,解题关键是确定集合中的元素确定集合的元素时要注意代表元形式,集合是函数的定义域,还是函数的值域,是不等式的解集还是曲线上的点集,都由代表元决定7C【解析】试题分析:通过对以下四个四棱锥的三视图对照可知,只有选项C是符合要求的.考点:三视图8C【解析】利用复数的四则运算可得,即可得答案.【详解】,复数的虚部为.故选:C.【点睛】本题考查复数的四则运算、虚部概念,考查运算求解能力,属于基础题.9D【解析】设双曲线的左焦点为,连接,设,则,

10、和中,利用勾股定理计算得到答案.【详解】设双曲线的左焦点为,连接,设,则,根据对称性知四边形为矩形,中:,即,解得;中:,即,故,故.故选:.【点睛】本题考查了双曲线离心率,意在考查学生的计算能力和综合应用能力.10B【解析】化简复数为的形式,然后判断复数的对应点所在象限,即可求得答案.【详解】对应的点的坐标为在第二象限故选:B.【点睛】本题主要考查了复数代数形式的乘除运算,考查了复数的代数表示法及其几何意义,属于基础题.11A【解析】分析:根据离心率得a,c关系,进而得a,b关系,再根据双曲线方程求渐近线方程,得结果.详解:e=ca=3,b2a2=c2-a2a2=e2-1=3-1=2,ba=

11、2,因为渐近线方程为y=bax,所以渐近线方程为y=2x,选A.点睛:已知双曲线方程x2a2-y2b2=1(a,b0)求渐近线方程:x2a2-y2b2=0y=bax.12B【解析】甲同学所有的选择方案共有种,甲同学同时选择历史和化学后,只需在生物、政治、地理三科中再选择一科即可,共有种选择方案,根据古典概型的概率计算公式,可得甲同学同时选择历史和化学的概率,故选B二、填空题:本题共4小题,每小题5分,共20分。132.【解析】如图,以为原点建立空间直角坐标系,设点,由得,证明为与平面所成角,令,用三角函数表示出,求解三角函数的最大值得到结果.【详解】如图,以为原点建立空间直角坐标系,设点,则,

12、又,得即;又平面,为与平面所成角,令,当时,最大,即与平面所成角的正切值的最大值为2.故答案为:2【点睛】本题主要考查了立体几何中的动点问题,考查了直线与平面所成角的计算.对于这类题,一般是建立空间直角坐标,在动点坐标内引入参数,将最值问题转化为函数的最值问题求解,考查了学生的运算求解能力和直观想象能力.14【解析】由题意可知半球的半径与正四棱锥的高相等,可得正四棱锥的棱与半径的关系,进而可写出半球的半径与四棱锥体积的关系,进而求得结果.【详解】设所给半球的半径为,则四棱锥的高,则,由四棱锥的体积,半球的体积为:.【方法点睛】涉及球与棱柱、棱锥的切、接问题时,一般过球心及多面体中的特殊点(一般

13、为接、切点)或线作截面,把空间问题转化为平面问题,再利用平面几何知识寻找几何体中元素间的关系,或只画内切、外接的几何体的直观图,确定球心的位置,弄清球的半径(直径)与该几何体已知量的关系,列方程(组)求解.151【解析】根据题意,由平均数公式可得,解得的值,进而由方差公式计算,可得答案【详解】根据题意,数据7,9,8,10的平均数为9,则,解得:,则其方差.故答案为:1【点睛】本题考平均数、方差的计算,考查运算求解能力,求解时注意求出的值,属于基础题16-6【解析】由可求,然后根据向量数量积的坐标表示可求 .【详解】=(1,2),=(-3,1),=(-4,-1),则 =1(-4)+2(-1)=

14、-6故答案为-6【点睛】本题主要考查了向量数量积的坐标表示,属于基础试题三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(1).(2)1【解析】(1)先根据题意建立空间直角坐标系,求得向量和向量的坐标,再利用线线角的向量方法求解.(2,由AN,设N(0,0)(04),则(1,1,2),再求得平面PBC的一个法向量,利用直线MN与平面PBC所成角的正弦值为,由|cos,|求解.【详解】(1) 因为PA平面ABCD,且AB,AD平面ABCD,所以PAAB,PAAD.又因为BAD90,所以PA,AB,AD两两互相垂直分别以AB,AD,AP为x,y,z轴建立空间直角坐标系,则由AD2

15、AB2BC4,PA4可得A(0,0,0),B(2,0,0),C(2,2,0),D(0,4,0),P(0,0,4)又因为M为PC的中点,所以M(1,1,2)所以(1,1,2),(0,0,4),所以cos,所以异面直线AP,BM所成角的余弦值为.(2) 因为AN,所以N(0,0)(04),则(1,1,2),(0,2,0),(2,0,4)设平面PBC的法向量为(x,y,z),则即令x2,解得y0,z1,所以(2,0,1)是平面PBC的一个法向量因为直线MN与平面PBC所成角的正弦值为,所以|cos,|,解得10,4,所以的值为1.【点睛】本题主要考查了空间向量法研究空间中线线角,线面角的求法及应用,

16、还考查了转化化归的思想和运算求解的能力,属于中档题.18(1);(2)【解析】(1)利用正弦定理边化角,再利用二倍角的正弦公式与正弦的和角公式化简求解即可.(2)由(1)有,根据正弦定理可得,进而求得的值,再根据三角形的面积公式求解即可.【详解】(1)由,得,得,由正弦定理得,显然,同时除以,得.所以.所以.显然,所以,解得.又,所以.(2)若,由正弦定理得,得,解得.又,所以.【点睛】本题主要考查了正余弦定理与面积公式在解三角形中的运用,需要根据题意用正弦定理进行边角互化,再根据三角恒等变换进行化简求解等.属于中档题.19(1)见解析;(2)见解析【解析】(1)根据,分别是,的中点,即可证明

17、,从而可证平面;(2)先根据为正三角形,且D是的中点,证出,再根据平面平面,得到平面,从而得到,结合,即可得证【详解】(1),分别是,的中点平面,平面平面.(2)为正三角形,且D是的中点平面平面,且平面平面,平面平面平面且,平面,且平面.【点睛】本题考查直线与平面平行的判定,面面垂直的性质等,解题时要认真审题,注意空间思维能力的培养,中档题20;.【解析】设顾客获得三等奖为事件,因为顾客掷得点数大于的概率为,顾客掷得点数小于,然后抽将得三等奖的概率为,求出;由题意可知,随机变量的可能取值为,相应求出概率,求出期望,化简得,由题意可知,即,求出的最小值.【详解】设顾客获得三等奖为事件,因为顾客掷

18、得点数大于的概率为,顾客掷得点数小于,然后抽将得三等奖的概率为,所以;由题意可知,随机变量的可能取值为, 且,所以随机变量的数学期望,化简得,由题意可知,即,化简得,因为,解得,即的最小值为.【点睛】本题主要考查概率和期望的求法,属于常考题.21(1);(2)或【解析】(1)先由题意得出 ,可得出与的等量关系,然后将点的坐标代入椭圆的方程,可求出与的值,从而得出椭圆的方程;(2)对直线的斜率是否存在进行分类讨论,当直线的斜率不存在时,可求出,然后进行检验;当直线的斜率存在时,可设直线的方程为,设点,先由直线与圆相切得出与之间的关系,再将直线的方程与椭圆的方程联立,由韦达定理,利用弦长公式并结合条件得出的值,从而求出直线的倾斜角.【详解】(1)由题可知圆只能经过椭圆的上下顶点,所以椭圆焦距等于

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论