2022年贵州省天柱民中、锦屏高考仿真卷数学试卷含解析_第1页
2022年贵州省天柱民中、锦屏高考仿真卷数学试卷含解析_第2页
2022年贵州省天柱民中、锦屏高考仿真卷数学试卷含解析_第3页
2022年贵州省天柱民中、锦屏高考仿真卷数学试卷含解析_第4页
2022年贵州省天柱民中、锦屏高考仿真卷数学试卷含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022高考数学模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目

2、要求的。1周易历来被人们视作儒家群经之首,它表现了古代中华民族对万事万物的深刻而又朴素的认识,是中华人文文化的基础,它反映出中国古代的二进制计数的思想方法我们用近代术语解释为:把阳爻“- ”当作数字“1”,把阴爻“-”当作数字“0”,则八卦所代表的数表示如下:卦名符号表示的二进制数表示的十进制数坤0000震0011坎0102兑0113依此类推,则六十四卦中的“屯”卦,符号“ ”表示的十进制数是( )A18B17C16D152如图是一个算法流程图,则输出的结果是()ABCD3公元263年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并创立了“割圆术”,利

3、用“割圆术”刘徽得到了圆周率精确到小数点后两位的近似值,这就是著名的“徽率”。如图是利用刘徽的“割圆术”思想设计的一个程序框图,则输出的值为( )(参考数据: )A48B36C24D124己知函数的图象与直线恰有四个公共点,其中,则( )AB0C1D5已知函数,则的值等于( )A2018B1009C1010D20206设全集,集合,.则集合等于( )ABCD7若复数满足,则对应的点位于复平面的( )A第一象限B第二象限C第三象限D第四象限8某工厂利用随机数表示对生产的600个零件进行抽样测试,先将600个零件进行编号,编号分别为001,002,599,600.从中抽取60个样本,下图提供随机数

4、表的第4行到第6行:若从表中第6行第6列开始向右读取数据,则得到的第6个样本编号是( )A324B522C535D5789将函数图象向右平移个单位长度后,得到函数的图象关于直线对称,则函数在上的值域是( )ABCD10若执行如图所示的程序框图,则输出的值是( )ABCD411若实数满足的约束条件,则的取值范围是( )ABCD12已知复数,则对应的点在复平面内位于( )A第一象限B第二象限C第三象限D第四象限二、填空题:本题共4小题,每小题5分,共20分。13若一组样本数据7,9,8,10的平均数为9,则该组样本数据的方差为_.14从分别写有1,2,3,4的4张卡片中随机抽取1张,放回后再随机抽

5、取1张,则抽得的第一张卡片上的数不小于第二张卡片上的数的概率为_.15数列满足递推公式,且,则_.16经过椭圆中心的直线与椭圆相交于、两点(点在第一象限),过点作轴的垂线,垂足为点.设直线与椭圆的另一个交点为.则的值是_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知数列的各项都为正数,且()求数列的通项公式;()设,其中表示不超过x的最大整数,如,求数列 的前2020项和18(12分)如图,已知四棱锥,平面,底面为矩形,为的中点,.(1)求线段的长.(2)若为线段上一点,且,求二面角的余弦值.19(12分)已知直线过椭圆的右焦点,且交椭圆于A,B两点,线段AB

6、的中点是,(1)求椭圆的方程;(2)过原点的直线l与线段AB相交(不含端点)且交椭圆于C,D两点,求四边形面积的最大值.20(12分)已知在ABC中,角A,B,C的对边分别为a,b,c,且cosBb+cosCc=23sinA3sinC. (1)求b的值;(2)若cosB+3sinB=2,求a+c的取值范围.21(12分)已知函数(1)若,证明:当时,;(2)若在只有一个零点,求的值.22(10分)已知函数.()当时,求不等式的解集;()若存在满足不等式,求实数的取值范围.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1B【解析】由

7、题意可知“屯”卦符号“”表示二进制数字010001,将其转化为十进制数即可.【详解】由题意类推,可知六十四卦中的“屯”卦符号“”表示二进制数字010001,转化为十进制数的计算为120+124=1故选:B【点睛】本题主要考查数制是转化,新定义知识的应用等,意在考查学生的转化能力和计算求解能力.2A【解析】执行程序框图,逐次计算,根据判断条件终止循环,即可求解,得到答案【详解】由题意,执行上述的程序框图:第1次循环:满足判断条件,;第2次循环:满足判断条件,;第3次循环:满足判断条件,;不满足判断条件,输出计算结果,故选A【点睛】本题主要考查了循环结构的程序框图的结果的计算与输出,其中解答中执行

8、程序框图,逐次计算,根据判断条件终止循环是解答的关键,着重考查了运算与求解能力,属于基础题3C【解析】由开始,按照框图,依次求出s,进行判断。【详解】 ,故选C.【点睛】框图问题,依据框图结构,依次准确求出数值,进行判断,是解题关键。4A【解析】先将函数解析式化简为,结合题意可求得切点及其范围,根据导数几何意义,即可求得的值.【详解】函数即直线与函数图象恰有四个公共点,结合图象知直线与函数相切于,因为,故,所以.故选:A.【点睛】本题考查了三角函数的图像与性质的综合应用,由交点及导数的几何意义求函数值,属于难题.5C【解析】首先,根据二倍角公式和辅助角公式化简函数解析式,根据所求函数的周期性,

9、得到其周期为4,然后借助于三角函数的周期性确定其值即可【详解】解: ,的周期为, ,故选:C【点睛】本题重点考查了三角函数的图象与性质、三角恒等变换等知识,掌握辅助角公式化简函数解析式是解题的关键,属于中档题6A【解析】先算出集合,再与集合B求交集即可.【详解】因为或.所以,又因为.所以.故选:A.【点睛】本题考查集合间的基本运算,涉及到解一元二次不等式、指数不等式,是一道容易题.7D【解析】利用复数模的计算、复数的除法化简复数,再根据复数的几何意义,即可得答案;【详解】,对应的点,对应的点位于复平面的第四象限.故选:D.【点睛】本题考查复数模的计算、复数的除法、复数的几何意义,考查运算求解能

10、力,属于基础题.8D【解析】因为要对600个零件进行编号,所以编号必须是三位数,因此按要求从第6行第6列开始向右读取数据,大于600的,重复出现的舍去,直至得到第六个编号.【详解】从第6行第6列开始向右读取数据,编号内的数据依次为:,因为535重复出现,所以符合要求的数据依次为,故第6个数据为578.选D.【点睛】本题考查了随机数表表的应用,正确掌握随机数表法的使用方法是解题的关键.9D【解析】由题意利用函数的图象变换规律,三角函数的图象的对称性,余弦函数的值域,求得结果.【详解】解:把函数图象向右平移个单位长度后,可得的图象;再根据得到函数的图象关于直线对称,函数.在上,故,即的值域是,故选

11、:D.【点睛】本题主要考查函数的图象变换规律,三角函数的图象的对称性,余弦函数的值域,属于中档题10D【解析】模拟程序运行,观察变量值的变化,得出的变化以4为周期出现,由此可得结论【详解】;如此循环下去,当时,此时不满足,循环结束,输出的值是4.故选:D【点睛】本题考查程序框图,考查循环结构解题时模拟程序运行,观察变量值的变化,确定程序功能,可得结论11B【解析】根据所给不等式组,画出不等式表示的可行域,将目标函数化为直线方程,平移后即可确定取值范围.【详解】实数满足的约束条件,画出可行域如下图所示:将线性目标函数化为,则将平移,平移后结合图像可知,当经过原点时截距最小,;当经过时,截距最大值

12、,所以线性目标函数的取值范围为,故选:B.【点睛】本题考查了线性规划的简单应用,线性目标函数取值范围的求法,属于基础题.12A【解析】利用复数除法运算化简,由此求得对应点所在象限.【详解】依题意,对应点为,在第一象限.故选A.【点睛】本小题主要考查复数除法运算,考查复数对应点的坐标所在象限,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。131【解析】根据题意,由平均数公式可得,解得的值,进而由方差公式计算,可得答案【详解】根据题意,数据7,9,8,10的平均数为9,则,解得:,则其方差.故答案为:1【点睛】本题考平均数、方差的计算,考查运算求解能力,求解时注意求出的值,属于基础题

13、14【解析】基本事件总数,抽得的第一张卡片上的数不小于第二张卡片上的数包含的基本事件有10种,由此能求出抽得的第一张卡片上的数不小于第二张卡片上的数的概率【详解】从分别写有1,2,3,4的4张卡片中随机抽取1张,放回后再随机抽取1张,基本事件总数,抽得的第一张卡片上的数不小于第二张卡片上的数包含的基本事件有10种,分别为:,则抽得的第一张卡片上的数不小于第二张卡片上的数的概率为故答案为:【点睛】本题考查古典概型概率的求法,考查运算求解能力,求解时注意辨别概率的模型152020【解析】可对左右两端同乘以得,依次写出,累加可得,再由得,代入即可求解【详解】左右两端同乘以有,从而,将以上式子累加得.

14、由得.令,有.故答案为:2020【点睛】本题考查数列递推式和累加法的应用,属于基础题16【解析】作出图形,设点,则、,设点,利用点差法得出,利用斜率公式得出,进而可得出,可得出,由此可求得的值.【详解】设点,则、,设点,则,两式相减得,即,即,由斜率公式得,故,因此,.故答案为:.【点睛】本题考查椭圆中角的余弦值的求解,涉及了点差法与斜率公式的应用,考查计算能力,属于中等题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17();()4953【解析】()递推公式变形为,由数列是正项数列,得到,根据数列是等比数列求通项公式;(),根据新定义和对数的运算分类讨论数列的通项公式,并求

15、前2020项和【详解】(),又数列的各项都为正数,即数列是以2为首项,2为公比的等比数列,(),数列的前2020项的和为【点睛】本题考查根据数列的递推公式求通项公式和数列的前项和,意在考查转化与化归的思想,计算能力,属于中档题型.18(1)的长为4(2)【解析】(1)分别以所在直线为轴,建立如图所示的空间直角坐标系,设,根据向量垂直关系计算得到答案.(2)计算平面的法向量为,为平面的一个法向量,再计算向量夹角得到答案.【详解】(1)分别以所在直线为轴,建立如图所示的空间直角坐标系.设,则,所以.,因为,所以,即,解得,所以的长为4.(2)因为,所以,又,故.设为平面的法向量,则即取,解得,所以

16、为平面的一个法向量.显然,为平面的一个法向量,则,据图可知,二面角的余弦值为.【点睛】本题考查了立体几何中的线段长度,二面角,意在考查学生的计算能力和空间想象能力.19(1)(2)【解析】(1)由直线可得椭圆右焦点的坐标为,由中点可得,且由斜率公式可得,由点在椭圆上,则,二者作差,进而代入整理可得,即可求解;(2)设直线,点到直线的距离为,则四边形的面积为,将代入椭圆方程,再利用弦长公式求得,利用点到直线距离求得,根据直线l与线段AB(不含端点)相交,可得,即,进而整理换元,由二次函数性质求解最值即可.【详解】(1)直线与x轴交于点,所以椭圆右焦点的坐标为,故,因为线段AB的中点是,设,则,且

17、,又,作差可得,则,得又,所以,因此椭圆的方程为.(2)由(1)联立,解得或,不妨令,易知直线l的斜率存在,设直线,代入,得,解得或,设,则,则,因为到直线的距离分别是,由于直线l与线段AB(不含端点)相交,所以,即,所以,四边形的面积,令,则,所以,当,即时,,因此四边形面积的最大值为.【点睛】本题考查求椭圆的标准方程,考查椭圆中的四边形面积问题,考查直线与椭圆的位置关系的应用,考查运算能力.20(1)b=32(2)a+c(32,3【解析】试题分析:(1)本问考查解三角形中的的“边角互化”.由于求b的值,所以可以考虑到根据余弦定理将cosB,cosC分别用边表示,再根据正弦定理可以将sinA

18、sinC转化为ac,于是可以求出b的值;(2)首先根据sinB+3cosB=2求出角B的值,根据第(1)问得到的b值,可以运用正弦定理求出ABC外接圆半径R,于是可以将a+c转化为2RsinA+2RsinC,又因为角B的值已经得到,所以将2RsinA+2RsinC转化为关于A的正弦型函数表达式,这样就可求出取值范围;另外本问也可以在求出角B的值后,应用余弦定理及重要不等式a2+c22ac,求出a+c的最大值,当然,此时还要注意到三角形两边之和大于第三边这一条件. 试题解析:(1)由cosBb+cosCc=23sinA3sinC,应用余弦定理,可得a2+c2-b22abc+a2+b2-c22abc=23a3c 化简得2b=3则b=32 (2) cosB+3sinB=212cosB+32sinB=1即sin(6+B)=1 B(0,) B+6=2 所以B=3 法一. 2R=bsinB=1,则a+c=sinA+sinC =sinA+sin(23-A) =32sinA+32cosA =3sin(A+6) 又0A23, 32b=32综上a+c(32,3考点:1.正、余弦定理;2.正弦型函数求值域;3.重要不等式的应用.21(1)见解析;(2)【解析】分析

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论