说明40.流体力学numerical methods for heat,年_peakchina l_第1页
说明40.流体力学numerical methods for heat,年_peakchina l_第2页
说明40.流体力学numerical methods for heat,年_peakchina l_第3页
说明40.流体力学numerical methods for heat,年_peakchina l_第4页
说明40.流体力学numerical methods for heat,年_peakchina l_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、Lecture 5: A First Look at the Diffusion EquationLast TimeWe completed an overview of the numerical discretization and solution process Domain discretizationDiscretization of governing equationsSolution of linear algebraic setProperties of discretization and path to solutionAccuracy, consistency, co

2、nvergence, stabilityThis TimeWe willApply the finite volume scheme to the steady diffusion equation on Cartesian structured meshesExamine the properties of the resulting discretizationDescribe how to discretize boundary conditions Consider steady diffusion with a source term: Here Integrate over con

3、trol volume to yield2D Steady Diffusion2D Steady DiffusionApply divergence theorem to yield Writing integral over control volume:Compactly: Discrete Flux BalanceDiscrete Flux Balance (contd)Area vectors given by:Fluxes given byDiscretizationAssume varies linearly between cell centroidsNote:Symmetry

4、of (P, E ) and (P,W) in flux expressionOpposite signs on (P,E) and (P,W) termsSource LinearizationSource term must be linearized as:Assume SP 0More on this later!Final Discrete EquationPNSEWCommentsDiscrete equation reflects balance of flux*area with generation inside control volumeAs in 1-D case, w

5、e need fluxes at cell facesThese are written in terms of cell-centroid values using profile assumptions.Comments (contd)Formulation is conservative: Discrete equation was derived by enforcing conservation. Fluxes balance source term regardless of mesh densityFor a structured mesh, each point P is co

6、upled to its four nearest neighbors. Corner points do not enter the formulation.Properties of DiscretizationaP, anb have same sign: This implies that if neighbor goes up, P also goes upIf S=0:Thus is bounded by neighbor values, in keeping with properties of elliptic partial differential equationsPro

7、perties of Discretization (contd)What about Scarborough Criterion ?Satisfied in the equalityWhat about this?Boundary ConditionsFlux BalanceDifferent boundary conditions require different representations of JbDirichlet BCsDirichlet boundary condition: b = givenPut in the requisite flux into the near-

8、boundary cell balanceDirichlet BCs (contd)For near-boundary cells:Satisfies Scarborough Criterion !Also, P bounded by interior neighbors and boundary value in the absence of source termsNeumann BCsNeumann boundary conditions : qb givenReplace Jb in cell balance with given fluxNeumann BCs (contd)For

9、Neumann boundariesSo inequality constraint in Scarborough criterion is not satisfied Also, P is not bounded by interior neighbors and boundary value even in the absence of source terms this is is fine because of the added flux at the boundaryBoundary Values and FluxesOnce we solve for the interior v

10、alues of , we can recover the boundary value of the flux for Dirichlet boundary conditions usingSimilarly, for Neumann boundary conditions, we can find the boundary value of usingClosureIn this lecture we Described the discretization procedure for the diffusion equation on Cartesian meshesSaw that the resulting discretization process preserves the properties of elliptic equationsSince we get diagonal dominance with Dirichlet bc, the discretiza

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论