押第22题 导数(新高考)(原卷)_第1页
押第22题 导数(新高考)(原卷)_第2页
押第22题 导数(新高考)(原卷)_第3页
押第22题 导数(新高考)(原卷)_第4页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、押第22题 导数导数的应用也一直是高考的热点,尤其是导数与函数的单调性、极值、最值问题是高考考查的重点内容,有时也会考查导数的运算、导数的几何意义等,比较综合.1导数的几何意义的应用:(1)已知切点P(x0,y0),求y=f (x)过点P的切线方程:求出切线的斜率f (x0),由点斜式写出方程;(2)已知切线的斜率为k,求y=f (x)的切线方程:设切点P(x0,y0),通过方程k=f (x0)解得x0,再由点斜式写出方程;(3)已知切线上一点(非切点),求y=f (x)的切线方程:设切点P(x0,y0),利用导数求得切线斜率f (x0),再由斜率公式求得切线斜率,列方程(组)解得x0,最后由

2、点斜式或两点式写出方程(4)若曲线的切线与已知直线平行或垂直,求曲线的切线方程时,先由平行或垂直关系确定切线的斜率,再由k=f (x0)求出切点坐标(x0,y0),最后写出切线方程(5)在点P处的切线即是以P为切点的切线,P一定在曲线上.过点P的切线即切线过点P,P不一定是切点因此在求过点P的切线方程时,应首先检验点P是否在已知曲线上2利用导数判断或证明一个函数在给定区间上的单调性,实质上就是判断或证明不等式()在给定区间上恒成立一般步骤为:(1)求f (x);(2)确认f (x)在(a,b)内的符号;(3)作出结论,时为增函数,时为减函数3由函数的单调性求参数的取值范围的方法(1)可导函数在

3、某一区间上单调,实际上就是在该区间上(或)(在该区间的任意子区间内都不恒等于0)恒成立,然后分离参数,转化为求函数的最值问题,从而获得参数的取值范围;(2)可导函数在某一区间上存在单调区间,实际上就是(或)在该区间上存在解集,这样就把函数的单调性问题转化成了不等式问题;(3)若已知在区间I上的单调性,区间I中含有参数时,可先求出的单调区间,令I是其单调区间的子集,从而可求出参数的取值范围.4(1)求函数极值的方法:确定函数的定义域求导函数求方程的根检查在方程的根的左、右两侧的符号,确定极值点如果左正右负,那么在这个根处取得极大值;如果左负右正,那么在这个根处取得极小值;如果在这个根的左、右两侧

4、符号不变,则在这个根处没有极值(2)利用极值求参数的取值范围:确定函数的定义域,求导数,求方程的根的情况,得关于参数的方程(或不等式),进而确定参数的取值或范围.5求函数f (x)在a,b上最值的方法(1)若函数f (x)在a,b上单调递增或递减,则f (a)与f (b)一个为最大值,一个为最小值(2)若函数f (x)在区间(a,b)内有极值,先求出函数f (x)在区间(a,b)上的极值,与f (a)、f (b)比较,其中最大的一个是最大值,最小的一个是最小值(3)函数f (x)在区间(a,b)上有唯一一个极值点时,这个极值点就是最大(或最小)值点1(2021浙江高考真题)设a,b为实数,且,

5、函数(1)求函数的单调区间;(2)若对任意,函数有两个不同的零点,求a的取值范围;(3)当时,证明:对任意,函数有两个不同的零点,满足.(注:是自然对数的底数)2(2021天津高考真题)已知,函数(I)求曲线在点处的切线方程:(II)证明存在唯一的极值点(III)若存在a,使得对任意成立,求实数b的取值范围3(2021北京高考真题)已知函数(1)若,求曲线在点处的切线方程;(2)若在处取得极值,求的单调区间,以及其最大值与最小值4(2021全国高考真题)已知函数(1)讨论的单调性;(2)从下面两个条件中选一个,证明:只有一个零点;5(2021全国高考真题)已知函数.(1)讨论的单调性;(2)设

6、,为两个不相等的正数,且,证明:.1(2022天津一模)已知函数,.(1)若曲线在点处的切线的斜率为4,求a的值;(2)当时,求的单调区间;(3)已知的导函数在区间上存在零点.求证:当时,.2(2022福建模拟预测)已知函数.(1)当时,求函数的极值;(2)若曲线有,两个零点.(i)求的取值范围;(ii)证明:存在一组,(),使得的定义域和值域均为.3(2022湖南雅礼中学二模)已知函数,且正数a,b满足(1)讨论f(x)的单调性;(2)若的零点为,且m,n满足,求证:.(其中是自然对数的底数)4(2022重庆八中模拟预测)已知函数.(1)若在单调递增,求a的取值范围.(2)若,且,求a.5(2022江苏南京市第一中学三模)已知函数(1)证明:;(2)若,证明:(限时:30分钟)1记,为的导函数若对,则称函数为上的“凸函数”已知函数,(1)若函数为上的凸函数,求的取值范围;(2)若函数在上有极值,求的取值范围2已知函数.(1)当时,求曲线在点处的切线方程;(2)求函数在的最小值.3已知函数(1)当时,求在处的切线方程;(2)若在定义域上存在极大值,求实数的取值范围.4已知函数,直线分别与函数,的图象交于,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论