初高中数学衔接知识点专题(一)_第1页
初高中数学衔接知识点专题(一)_第2页
初高中数学衔接知识点专题(一)_第3页
初高中数学衔接知识点专题(一)_第4页
初高中数学衔接知识点专题(一)_第5页
已阅读5页,还剩6页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、初高中数学衔接知识点专题(一) 专题一 数与式的运算【要点回顾】1绝对值1绝对值的代数意义: 即 2绝对值的几何意义: 的距离 3两个数的差的绝对值的几何意义:表示 的距离4两个绝对值不等式:;2乘法公式我们在初中已经学习过了下列一些乘法公式:1平方差公式: ;2完全平方和公式: ;3完全平方差公式: 我们还可以通过证明得到下列一些乘法公式:公式1公式2(立方和公式)公式3 (立方差公式)说明:上述公式均称为“乘法公式”3根式1式子叫做二次根式,其性质如下:(1) ;(2) ;(3) ; (4) 2平方根与算术平方根的概念: 叫做的平方根,记作,其中叫做的算术平方根3立方根的概念: 叫做的立方

2、根,记为4分式1分式的意义 形如的式子,若B中含有字母,且,则称为分式当M0时,分式具有下列性质: (1) ; (2) 2繁分式 当分式的分子、分母中至少有一个是分式时,就叫做繁分式,如,说明:繁分式的化简常用以下两种方法:(1) 利用除法法则;(2) 利用分式的基本性质3分母(子)有理化把分母(子)中的根号化去,叫做分母(子)有理化分母有理化的方法是分母和分子都乘以分母的有理化因式,化去分母中的根号的过程;而分子有理化则是分母和分子都乘以分母的有理化因式,化去分子中的根号的过程【例题选讲】例1 解下列不等式:(1) (2)4例2 计算: (1) (2)(3) (4)例3 已知,求的值例4 已

3、知,求的值例5 计算(没有特殊说明,本节中出现的字母均为正数):(1) (2) (3) (4) 例6 设,求的值例7 化简:(1) (2)(1)解法一:原式= 解法二:原式=(2)解:原式=说明:(1) 分式的乘除运算一般化为乘法进行,当分子、分母为多项式时,应先因式分解再进行约分化简;(2) 分式的计算结果应是最简分式或整式 【巩固练习】解不等式 设,求代数式的值当,求的值设,求的值计算6化简或计算:(1) (2) (3) (4) 各专题参考答案 专题一数与式的运算参考答案例1 (1)解法1:由,得;若,不等式可变为,即; 若,不等式可变为,即,解得:综上所述,原不等式的解为解法2: 表示x

4、轴上坐标为x的点到坐标为2的点之间的距离,所以不等式的几何意义即为x轴上坐标为x的点到坐标为2的点之间的距离小于1,观察数轴可知坐标为x的点在坐标为3的点的左侧,在坐标为1的点的右侧所以原不等式的解为解法3:,所以原不等式的解为(2)解法一:由,得;由,得;若,不等式可变为,即4,解得x0,又x1,x0;若,不等式可变为,即14,不存在满足条件的x;若,不等式可变为,即4, 解得x4又x3,x4综上所述,原不等式的解为x0,或x4解法二:如图,表示x轴上坐标为x的点P到坐标为1的点A之间的距离|PA|,即|PA|x1|;|x3|表示x轴上点P到坐标为2的点B之间的距离|PB|,即|PB|x3|

5、所以,不等式4的几何意义即为|PA|PB|4由|AB|2,可知点P 在点C(坐标为0)的左侧、或点P在点D(坐标为4)的右侧所以原不等式的解为x0,或x4例2(1)解:原式= 说明:多项式乘法的结果一般是按某个字母的降幂或升幂排列(2)原式=(3)原式=(4)原式=例3解: 原式=例4解:原式= ,把代入得原式=例5解:(1)原式= (2)原式=说明:注意性质的使用:当化去绝对值符号但字母的范围未知时,要对字母的取值分类讨论(3)原式=(4) 原式=例6解:原式=说明:有关代数式的求值问题:(1)先化简后求值;(2)当直接代入运算较复杂时,可根据结论的结构特点,倒推几步,再代入条件,有时整体代

6、入可简化计算量【巩固练习】 1 2 3或4 5 6专题二因式分解答案例1分析:(1) 中应先提取公因式再进一步分解;(2) 中提取公因式后,括号内出现,可看着是或解:(1) (2) 例2(1)分析:按照原先分组方式,无公因式可提,需要把括号打开后重新分组,然后再分解因式解:(2)分析:先将系数2提出后,得到,其中前三项作为一组,它是一个完全平方式,再和第四项形成平方差形式,可继续分解因式解:例5 解: 【巩固练习】12; 3 其他情况如下:;.4专题三一元二次方程根与系数的关系习题答案例1解:,(1) ; (2) ;(3) ;(4)例2解:可以把所给方程看作为关于的方程,整理得:由于是实数,所

7、以上述方程有实数根,因此:,代入原方程得:综上知:例3解:由题意,根据根与系数的关系得:(1) (2) (3) (4) 说明:利用根与系数的关系求值,要熟练掌握以下等式变形:,等等韦达定理体现了整体思想【巩固练习】1 A; 2A; 3; 4; 5 (1)当时,方程为,有实根;(2) 当时,也有实根6(1) ; (2) 专题四 平面直角坐标系、一次函数、反比例函数参考答案例1 解:(1)因为、关于x轴对称,它们横坐标相同,纵坐标互为相反数,所以,则、(2)因为、关于y轴对称,它们横坐标互为相反数,纵坐标相同,所以,则、(3)因为、关于原点对称,它们的横纵坐标都互为相反数,所以,则、例2分析:因为

8、直线过第一、三象限,所以可知k0,又因为b2,所以直线与y轴交于(0,2),即可知OB2,而AOB的面积为2,由此可推算出OA2,而直线过第二象限,所以A点坐标为(2,0),由A、B两点坐标可求出此一次函数的表达式。解:B是直线ykx2与y轴交点,B(0,2),OB2,过第二象限,【巩固练习】1 B 2 D(2,2)、C(8,2)、B(6,0) 3(1)(2)点的坐标是或专题五二次函数参考答案例1 解:y3x26x13(x1)24,函数图象的开口向下;对称轴是直线x1;顶点坐标为(1,4);当x1时,函数y取最大值y4;当x1时,y随着x的增大而增大;当x1时,y随着x的增大而减小;采用描点法

9、画图,选顶点A(1,4),与x轴交于点B和C,与y轴的交点为D(0,1),过这五点画出图象(如图25所示)说明:从这个例题可以看出,根据配方后得到的性质画函数的图象,可以直接选出关键点,减少了选点的盲目性,使画图更简便、图象更精确例2 分析:由于每天的利润日销售量y(销售价x120),日销售量y又是销售价x的一次函数,所以,欲求每天所获得的利润最大值,首先需要求出每天的利润与销售价x之间的函数关系,然后,再由它们之间的函数关系求出每天利润的最大值解:由于y是x的一次函数,于是,设ykx(B),将x130,y70;x150,y50代入方程,有 解得 k1,b200 yx200设每天的利润为z(元

10、),则z(x+200)(x120)x2320 x24000(x160)21600,当x160时,z取最大值1600答:当售价为160元/件时,每天的利润最大,为1600元例3 分析:本例中函数自变量的范围是一个变化的范围,需要对a的取值进行讨论 解:(1)当a2时,函数yx2的图象仅仅对应着一个点(2,4),所以,函数的最大值和最小值都是4,此时x2; (2)当2a0时,由图226可知,当x2时,函数取最大值y4;当xa时,函数取最小值ya2;(3)当0a2时,由图226可知,当x2时,函数取最大值y4;当x0时,函数取最小值y0;(4)当a2时,由图226可知,当xa时,函数取最大值ya2;

11、当x0时,函数取最小值y0说明:在本例中,利用了分类讨论的方法,对a的所有可能情形进行讨论此外,本例中所研究的二次函数的自变量的取值不是取任意的实数,而是取部分实数来研究,在解决这一类问题时,通常需要借助于函数图象来直观地解决问题例4(1)分析:在解本例时,要充分利用题目中所给出的条件最大值、顶点位置,从而可以将二次函数设成顶点式,再由函数图象过定点来求解出系数a解:二次函数的最大值为2,而最大值一定是其顶点的纵坐标,顶点的纵坐标为2又顶点在直线yx1上,所以,2x1,x1顶点坐标是(1,2)设该二次函数的解析式为,二次函数的图像经过点(3,1),解得a2二次函数的解析式为,即y2x28x7

12、说明:在解题时,由最大值确定出顶点的纵坐标,再利用顶点的位置求出顶点坐标,然后设出二次函数的顶点式,最终解决了问题因此,在解题时,要充分挖掘题目所给的条件,并巧妙地利用条件简捷地解决问题(2) 分析一:由于题目所给的条件中,二次函数的图象所过的两点实际上就是二次函数的图象与x轴的交点坐标,于是可以将函数的表达式设成交点式解法一:二次函数的图象过点(3,0),(1,0),可设二次函数为ya(x3) (x1) (a0),展开,得 yax22ax3a, 顶点的纵坐标为 ,由于二次函数图象的顶点到x轴的距离2,|4a|2,即a所以,二次函数的表达式为y,或y分析二:由于二次函数的图象过点(3,0),(

13、1,0),所以,对称轴为直线x1,又由顶点到x轴的距离为2,可知顶点的纵坐标为2,或2,于是,又可以将二次函数的表达式设成顶点式来解,然后再利用图象过点(3,0),或(1,0),就可以求得函数的表达式解法二:二次函数的图象过点(3,0),(1,0),对称轴为直线x1又顶点到x轴的距离为2,顶点的纵坐标为2,或2于是可设二次函数为ya(x1)22,或ya(x1)22,由于函数图象过点(1,0),0a(11)22,或0a(11)22a,或a所以,所求的二次函数为y(x1)22,或y(x1)22说明:上述两种解法分别从与x轴的交点坐标及顶点的坐标这两个不同角度,利用交点式和顶点式来解题,在今后的解题

14、过程中,要善于利用条件,选择恰当的方法来解决问题(3)解:设该二次函数为yax2bxc(a0)由函数图象过点(1,22),(0,8),(2,8),可得 解得 a2,b12,c8所以,所求的二次函数为y2x212x8 【巩固练习】1(1)D (2)C (3)D 2(1)yx2x2 (2)yx22x33(1)(2) (3)(4)4当长为6m,宽为3m时,矩形的面积最大5(1)函数f(x)的解析式为 (2)函数y的图像如图所示(3)由函数图像可知,函数y的取值范围是0y2专题六二次函数的最值问题参考答案例1分析:由于函数和的自变量x的取值范围是全体实数,所以只要确定它们的图象有最高点或最低点,就可以

15、确定函数有最大值或最小值解:(1)因为二次函数中的二次项系数20,所以抛物线有最低点,即函数有最小值因为=,所以当时,函数有最小值是(2)因为二次函数中的二次项系数-10,所以抛物线有最高点,即函数有最大值因为=,所以当时,函数有最大值例2解:作出函数的图象当时,当时,说明:二次函数在自变量的给定范围内,对应的图象是抛物线上的一段那么最高点的纵坐标即为函数的最大值,最低点的纵坐标即为函数的最小值根据二次函数对称轴的位置,函数在所给自变量的范围的图象形状各异下面给出一些常见情况:例3解:作出函数在内的图象可以看出:当时,无最大值所以,当时,函数的取值范围是例5解:(1) 由已知得每件商品的销售利润为元,那么件的销售利润为,又(2) 由(1)知对称轴为,位于的范围内,另抛物线开口向下当时,当每件商品的售价定为42元时每天有最大销售利润,最大销售利润为432元【巩固练习】14 14或2, 2 3 4或5当时,此时;当时,此时专题七不等式答案例2解:(1) 不等式可化为 不等式的解是(2) 不等式可化为 不等式的解是;(3) 不等式可化为例3解:显然不合题意,于是:例4分析:(1) 类似于一元二次不等式的解法,运用“符号法则”将之化为两

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论