拟除虫菊酯杀虫剂发展和作用Pyrethroidinsecticides_第1页
拟除虫菊酯杀虫剂发展和作用Pyrethroidinsecticides_第2页
拟除虫菊酯杀虫剂发展和作用Pyrethroidinsecticides_第3页
拟除虫菊酯杀虫剂发展和作用Pyrethroidinsecticides_第4页
拟除虫菊酯杀虫剂发展和作用Pyrethroidinsecticides_第5页
已阅读5页,还剩45页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、拟除虫菊酯杀虫剂发展和作用Pyrethroid insecticides是根据天然除虫菊素的化学结构而仿制成的一类超高效杀虫剂。发展简史: 一、天然除虫菊 二、人工合成的拟除虫菊酯第一代拟除虫菊酯第二代拟除虫菊酯一、天然除虫菊发现和传播发现传说:波斯一妇女发现美丽小花能杀死昆虫产自中国Lodeman(1903)记载:19世纪初Jumtikoff(亚美尼亚人)发现北高加索一个部落用除虫菊花粉杀虫,1928年起开始大量加工制造这种药粉。Gnadinger(1935)认为用于杀虫的是一种红花除虫菊(Chrysamthemum roseum Bich)1940年在南斯拉夫的达马提亚地区(Dalmati

2、a)发现,真正用于大量杀虫的栽培品种是毒效更强的白花除虫菊(Chrysanthemum Cinerariaefolium),含A.I.1%,最高达1.5%。传播1840年左右在波斯栽培(或产于中国)19世纪中期传至欧洲后半期传至日本(1885)及美国20世纪初传至非洲1950年传至南美20世纪初主产南斯拉夫二次大战前主产日本(1.3万吨干花年,占全世界70%)40s中70s目前肯尼亚、坦桑尼亚、厄瓜多尔、乌干达、刚果、日本、澳大利亚、我国江苏、云南、台湾等地。含量 花: 0.81.5%茎叶:0.15% 根:无除虫菊素为黄色粘稠状液体,在碱、强光、高温(60)下不稳定(需加增效剂),不溶于水,安

3、全无药害。 除虫菊(0.7-1.0%)加工剂型 除虫菊乳油(3%) 油剂、气雾剂、蚊香 卫生害虫:蚊、蝇、蜚蠊防治对象 家畜害虫:厩蝇、角蝇 贮粮害虫:米象除虫菊花中A.I.的研究1909年藤谷(日本)首次从除虫菊花的乙醇提取物中性组分中分离出有杀虫活性的浆状酯,称Pyrethron。1923年Yamamoto 山本(日本)作了验证,并对酸部分氧化降解分离鉴定出反式蒈酸酮,首次证实环丙烷结构。1924年瑞士化学家Staudinger和Ruzicka发现除虫菊素、组分的结构(多年研究,十多篇文章),为其化学发展奠定了基础(虽分子结构推测尚存差错)1945年美国Laforge和Barthel发现了

4、瓜叶除虫菊素、两组分的结构,除虫菊素侧链的结构,并开发了巧妙合成环戊烯醇酮的方法;英国Harper和Crombia研究了菊酸的立体构型,后来英国Harper和日本Katsuda分别发现了酸和醇的绝对构型,这对发展拟除虫菊酯起了很大的作用。1964年英国Godin等发现了茉酮除虫菊素、组分的结构。RR 、 Pyrethrin除虫菊素(38%)(30%)-CH3-COOCH3Cinerin 瓜叶除虫菊素(9%)(13%)-CH3-COOCH3Jasmolin茉酮除虫菊素(5%)(5%)-CH3-COOCH3戊2,4,二烯基丁2-烯基戊2-烯基特点(1)高效、低毒、不易残留Pyrethrin杀虫活性

5、最高(含量最高)Jasmolin杀虫活性很低Pyrethrin I 对蚊、蝇有高杀虫效果(高于丙烯菊酯),是合成Pyrethroid的前体化合物(原型)P.& J.对家蝇击倒作用强(2)极不稳定(光、热易分解)、残效期太短、价贵,农业上不能使用。 菊酸:侧链(偕二甲基) 菊醇:不饱和侧链 (戊烯酮环) 光敏中心二、人工合成拟除虫菊酯Pyrethroid第一代拟除虫菊酯(1948-1971年)丙烯菊酯(Allethrin)以Pyrethrin为原型,美国Laforge等(1947)用丙烯基(-CH2CH=CH2)代替其环戊烯醇侧链的戊二烯基。1949年美国碳素化学公司投产。特点八个异构体以1R,

6、3R(+)反式,S(+)异构体对家蝇毒力最高(LD50g/蝇),是毒力最低的1S,3R(-)反式,R(-)异构体g/蝇)的500倍。强触杀、击倒快,药效比除虫菊素差(尤其对蟑螂)。10-3Pa,可加工成蚊香,电热蚊香片。残效短,光敏感(稳定性比Pyrethrin稍好)低毒:大鼠口服LD50:685()-1100()mg/Kg其它主要品种到72年,共合成约19个品种(包括异构体约33个品种)。苄呋菊酯(Resmethrin)和生物苄呋菊酯(右旋反式异构体)(Bioresmethrin)Elliott.M.Rothamsted(1967)Resmethrin触杀作用强、高效 害虫 毒力5龄大豆毒蛾

7、与phoxim相近家蝇比除虫菊素高2.5倍淡色库蚊比丙烯菊酯高3倍德国小蠊比胺菊酯高3倍击倒差光稳定性比天然除虫菊素高毒性比天然除虫菊素低大鼠口服LD50=4240mg/kgBioresmethrin非常高效极低毒 大鼠口服LD50=8600-8800mg/kg 生物苄呋菊酯对家蝇等害虫的相对毒力家蝇辣根猿叶虫斑须按蚊埃及伊蚊生物苄呋苄呋7.73.31.151.36生物苄呋除虫菊素558.4生物苄呋丙烯菊酯118胺菊酯Tetramethrin 日本Kato(1963) , Sumitomo Chemi,Co.击倒作用强,毒杀差,有复活现象。对5龄大豆毒蛾触杀毒力为phoxim的1/9,DDT的

8、4倍。光解速度为除虫菊的1/10。可与触杀毒力高的药剂复配,防治卫生害虫可加增效剂。光稳定性的开发研究菊酸及其取代物研究二卤乙烯基类似物 Farkas(1958) 代替异丁烯侧链上甲基 为第二代Py菊酸部分的结构奠定了基础。增加环丙烯上甲基取代数 松井(1966) 为甲氰菊酯菊酸结构 奠定了基础菊醇及其取代物研究从苄菊酯的研究(氰基)苯醚菊酯二甲基苄菊酯dimethrin4-烯丙基苄基菊酯benethrin(高杀虫活性)4-炔丙基类似物(效力最大)US Barthel等 1958日本胜田1965胜田19672,6-二甲基-4-烯丙基类似物效力最大苯甲基苄基衍生物间位取代物比对位取代物效力大几倍

9、苯醚菊酯 phenothrin氰基苯醚菊酯cyphenothrin 在苄基C原子上引入-CN,使活性大大提高Elliott 等1963植田等板谷等1968松尾等1971第二代拟除虫菊酯UK Elliott,Michael(1976,1980两次获英女皇奖)在环丙烷羧酸的C=C侧链上的两甲基以卤素取代和以3-苯氧基苄醇作为菊醇部分而合成的酯,解决了对光不稳定问题,完成了第一代Py(仅用于室内防治害虫、牲畜体外寄生虫及贮粮害虫)向第二代Py转变。可用于农林害虫,成为农药发展史上的光辉篇章。氯菊酯permethrinNRDC-143Elliltt (1973 布莱顿会议)特点:(1)理化特性:难溶于

10、水,可溶解于丙酮、乙醇、乙醚、甲醇及二甲苯等有机溶剂。对热稳定,在酸性介质中比在碱性介质中稳定。4个异构体,R顺式氯菊酯毒力最高。克服了对光不稳定性,残效期7-10d。(2)触杀、胃毒、驱避活性,击倒迅速。触杀毒力比下列杀虫剂高的倍数DDTPhoximE605西维因苄菊酯粘虫3龄34.612.9粘虫5龄2065.316.73884.6棉铃虫6龄1290(3)极高杀虫效果,杀虫范围广,无-CN,刺激性小,防治卫生和牲畜害虫,也可防治农业害虫,对鳞、鞘、双、半翅目及蜚蠊目上百种害虫有效,但对螨、蚧无效(肉食性螨有效),对稻螟效果差(渗透差),对稻飞虱效果低。(4)低毒,大鼠口服LD502000mg

11、/Kg,对鱼高毒,红鲤鱼。(5)大田用药量:13g/亩(为常用杀虫剂的1/101/50),10%EC,1030ml/亩。氯氰菊酯CypermethrinNRDC-1498个异构体高效氯氰菊酯(4个异构体)顺反4060顺式氯氰菊酯(2个异构体)高效氯氰菊酯:1R-顺式酸-S-醇/1S-顺式酸-R醇111R-反式酸-S-醇/1S-反式酸-R醇11顺式氯氰菊酯:1R-顺式酸-S-醇/1S-顺式酸-R醇11Elliott. M. (1974)溴氰菊酯(敌杀死)DeltamethrinNRDC-161敌杀死即单个异构体右旋(1R,3R)-顺式酸-S-醇,是8个异构体中活力最高的。强触杀,触杀活性最高的菊

12、酯类杀虫剂,有一定的胃毒和拒避活性,无内吸及熏蒸作用。田间用量更低(1g A.I./亩),对5龄棉铃虫毒力为,而permethrin为。Elliott. M. (1974)氰戊菊酯与来福灵Fenvalerate S-5602(1974)Esfenvalerate(1985) 住友化学对氯苯基异戊酯代替菊酸部分(包括三碳环),但分子构型相似。4个异构体,S酸S醇(来福灵)活性最高,化学名称:(S)-2-(4-氯苯基)-3-甲基丁酸-S-氰基-3苯氧基苄基高效广谱触杀性杀虫剂,有一定的胃毒作用,无内吸活性,防治大多数作物害虫,对蟎类效果差。欧共体将其在茶叶上MRL从10mg/Kg提高到。Cl三氟氯

13、氰菊酯(功夫)Cyhalothrin(1)英国ICI公司(1977)开发的品种,是Z-(1R,3R)-S-酯/Z-(1S,3S)-R-酯和Z-(1R,3R)-R-酯/Z-(1S,3S)-S-酯的混合物,这两对异构体之比为4060。1982年英国帝国化学公司开发,Lambda-cyhalothrin(2个异构体),1R,cis,Z,S和1S,cis,Z,R 11混合物。(2)对螨类有效氟氯氰菊酯(百树) Cyfluthrin 拜耳公司(1977)甲氰菊酯Fenproperthrin住友公司(1973)增加环丙烷环上甲基取代数,能增加活性。杀螨作用,杀幼、成螨及卵,低温下药效好,无熏蒸作用。9.醚

14、菊酯 ethofenprox 以醚结构代替酯结构,类似于Py低毒LD50(大鼠) 4288mg/Kg ,对鱼低毒。 TLM鲤鱼5mg/L(48h)水蚤40mg/L(3h)虾490mg/L10.乙氰菊酯(cycloprothrin)杀螟菊酯对鱼毒性:鲤鱼50mg/L,低毒在生物等排的基础上引入硅原子,对鱼毒性明显降低,青鳉鱼TLM(48h)1000ppm。 10.硅醚菊酯对鱼毒性降低上万倍,可用于水田11.氟硅菊酯(silafluofen)硅白灵F F12.七氟菊酯(tefluthrin)第一个可用于土壤杀虫剂的拟除虫菊酯防治对象:鞘翅目和栖息在土壤中的鳞翅目和某些双翅目害虫。制剂:1.5、3.

15、0颗粒剂、10EC、10SCPy比较总结天然除虫菊素第一代Py 光不稳定 光稳定(由二苯醚、卤素取代) 卫生、贮粮害虫,寄生虫农业害虫杀虫活性(触杀、胃毒)多种组分、 拆分、定向合成单个或二个异构体混合物 高效异构体(构型决定药效)第二代Py更高(由卤素、-CN取代)环丙烷从有无结构由复杂简单杀螨活性从无有(含F化合物)鱼毒由高(酯) 低(中等毒性,含醚、肟醚)无内吸作用品种易产生抗性棉蚜抗性(1983-85)3年左右。机理为Kdr,具交互抗性棉铃虫(1983-89中国)、(197778198283澳大利亚)约6年。机理为多因子(MFO、表皮穿透、Kdr),交互抗性范围较窄,程度与品种有关。作用机理作用部位:神经细胞轴突部位(与DDT类似),作用于外周神经系统还是中枢神经系统没有确定。延缓轴突膜内外Na+门开闭,影响Na+、K+的通透性或产生毒素,引起组织细胞病变等,使昆虫致死。Narahashi(1980)根据昆虫中毒症状和对神经的作用将Py分为两类型:胺菊酯、丙烯菊酯、苄呋菊酯、苯醚菊酯、二氯苯醚菊酯等(不含-CN),产生明显重复后放。 原因: Na+、K+离子通道(尤其是Na+ 门)被延缓关闭,当动作电位近终止时, Na+仍然不断进入神经膜 内,膜的电位差使保持膜

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论