2022届浙江省宁波市六校联考高三六校第一次联考数学试卷含解析_第1页
2022届浙江省宁波市六校联考高三六校第一次联考数学试卷含解析_第2页
2022届浙江省宁波市六校联考高三六校第一次联考数学试卷含解析_第3页
2022届浙江省宁波市六校联考高三六校第一次联考数学试卷含解析_第4页
2022届浙江省宁波市六校联考高三六校第一次联考数学试卷含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022高考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡

2、一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1若函数在时取得极值,则( )ABCD2已知复数z满足(i为虚数单位),则z的虚部为( )ABC1D3已知复数z满足,则在复平面上对应的点在( )A第一象限B第二象限C第三象限D第四象限4将函数f(x)=sin 3x-cos 3x+1的图象向左平移个单位长度,得到函数g(x)的图象,给出下列关于g(x)的结论:它的图象关于直线x=对称;它的最小正周期为;它的图象关于点(,1)对称;它在上单调递增.其中所有正确结论的编号是( )ABCD5如图所示,为了测量、两座岛屿间的距离,小船从初始

3、位置出发,已知在的北偏西的方向上,在的北偏东的方向上,现在船往东开2百海里到达处,此时测得在的北偏西的方向上,再开回处,由向西开百海里到达处,测得在的北偏东的方向上,则、两座岛屿间的距离为( )A3BC4D6已知定义在上的偶函数满足,且在区间上是减函数,令,则的大小关系为( )ABCD7复数的虚部为()A1B3C1D28中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是ABCD9已知某几何体的三视图如图所示,则该几何体的体积是( )AB64CD3210执

4、行如图所示的程序框图,输出的结果为( )AB4CD11函数的部分图像如图所示,若,点的坐标为,若将函数向右平移个单位后函数图像关于轴对称,则的最小值为( )ABCD12设,则ABCD二、填空题:本题共4小题,每小题5分,共20分。13某校高三年级共有名学生参加了数学测验(满分分),已知这名学生的数学成绩均不低于分,将这名学生的数学成绩分组如下:,得到的频率分布直方图如图所示,则下列说法中正确的是_(填序号);这名学生中数学成绩在分以下的人数为;这名学生数学成绩的中位数约为;这名学生数学成绩的平均数为14已知,满足约束条件则的最小值为_.15某校为了解家长对学校食堂的满意情况,分别从高一、高二年

5、级随机抽取了20位家长的满意度评分,其频数分布表如下:满意度评分分组合计高一1366420高二2655220根据评分,将家长的满意度从低到高分为三个等级:满意度评分评分70分70评分90评分90分满意度等级不满意满意非常满意假设两个年级家长的评价结果相互独立,根据所给数据,以事件发生的频率作为相应事件发生的概率.现从高一、高二年级各随机抽取1名家长,记事件:“高一家长的满意度等级高于高二家长的满意度等级”,则事件发生的概率为_.16已知关于的不等式对于任意恒成立,则实数的取值范围为_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)如图,四棱锥中,底面为直角梯形,为等

6、边三角形,平面底面,为的中点. (1)求证:平面平面;(2)点在线段上,且,求平面与平面所成的锐二面角的余弦值.18(12分)如图,在直三棱柱中,点P,Q分别为,的中点.求证:(1)PQ平面;(2)平面.19(12分)已知函数,其中()当时,求函数的单调区间;()设,求证:;()若对于恒成立,求的最大值20(12分)已知函数.(1)设,若存在两个极值点,且,求证:;(2)设,在不单调,且恒成立,求的取值范围.(为自然对数的底数).21(12分)已知函数,.(1)当时,求函数的值域;(2),求实数的取值范围.22(10分)已知圆上有一动点,点的坐标为,四边形为平行四边形,线段的垂直平分线交于点.

7、()求点的轨迹的方程;()过点作直线与曲线交于两点,点的坐标为,直线与轴分别交于两点,求证:线段的中点为定点,并求出面积的最大值.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1D【解析】对函数求导,根据函数在时取得极值,得到,即可求出结果.【详解】因为,所以,又函数在时取得极值,所以,解得.故选D【点睛】本题主要考查导数的应用,根据函数的极值求参数的问题,属于常考题型.2D【解析】根据复数z满足,利用复数的除法求得,再根据复数的概念求解.【详解】因为复数z满足,所以,所以z的虚部为.故选:D.【点睛】本题主要考查复数的概念及运算

8、,还考查了运算求解的能力,属于基础题.3A【解析】设,由得:,由复数相等可得的值,进而求出,即可得解.【详解】设,由得:,即,由复数相等可得:,解之得:,则,所以,在复平面对应的点的坐标为,在第一象限.故选:A.【点睛】本题考查共轭复数的求法,考查对复数相等的理解,考查复数在复平面对应的点,考查运算能力,属于常考题.4B【解析】根据函数图象的平移变换公式求出函数的解析式,再利用正弦函数的对称性、单调区间等相关性质求解即可.【详解】因为f(x)=sin 3x-cos 3x+1=2sin(3x-)+1,由图象的平移变换公式知,函数g(x)=2sin3(x+)-+1=2sin(3x+)+1,其最小正

9、周期为,故正确;令3x+=k+,得x=+(kZ),所以x=不是对称轴,故错误;令3x+=k,得x=-(kZ),取k=2,得x=,故函数g(x)的图象关于点(,1)对称,故正确;令2k-3x+2k+,kZ,得-x+,取k=2,得x,取k=3,得x,故错误;故选:B【点睛】本题考查图象的平移变换和正弦函数的对称性、单调性和最小正周期等性质;考查运算求解能力和整体代换思想;熟练掌握正弦函数的对称性、单调性和最小正周期等相关性质是求解本题的关键;属于中档题、常考题型5B【解析】先根据角度分析出的大小,然后根据角度关系得到的长度,再根据正弦定理计算出的长度,最后利用余弦定理求解出的长度即可.【详解】由题

10、意可知:,所以,所以,所以,又因为,所以,所以.故选:B.【点睛】本题考查解三角形中的角度问题,难度一般.理解方向角的概念以及活用正、余弦定理是解答问题的关键.6C【解析】可设,根据在上为偶函数及便可得到:,可设,且,根据在上是减函数便可得出,从而得出在上单调递增,再根据对数的运算得到、的大小关系,从而得到的大小关系.【详解】解:因为,即,又,设,根据条件,;若,且,则:;在上是减函数;在上是增函数;所以,故选:C【点睛】考查偶函数的定义,减函数及增函数的定义,根据单调性定义判断一个函数单调性的方法和过程:设,通过条件比较与,函数的单调性的应用,属于中档题.7B【解析】对复数进行化简计算,得到

11、答案.【详解】所以的虚部为故选B项.【点睛】本题考查复数的计算,虚部的概念,属于简单题.8A【解析】详解:由题意知,题干中所给的是榫头,是凸出的几何体,求得是卯眼的俯视图,卯眼是凹进去的,即俯视图中应有一不可见的长方形,且俯视图应为对称图形故俯视图为故选A.点睛:本题主要考查空间几何体的三视图,考查学生的空间想象能力,属于基础题。9A【解析】根据三视图,还原空间几何体,即可得该几何体的体积.【详解】由该几何体的三视图,还原空间几何体如下图所示:可知该几何体是底面在左侧的四棱锥,其底面是边长为4的正方形,高为4,故.故选:A【点睛】本题考查了三视图的简单应用,由三视图还原空间几何体,棱锥体积的求

12、法,属于基础题.10A【解析】模拟执行程序框图,依次写出每次循环得到的的值,当,退出循环,输出结果.【详解】程序运行过程如下:,;,;,;,;,;,;,退出循环,输出结果为,故选:A.【点睛】该题考查的是有关程序框图的问题,涉及到的知识点有判断程序框图输出结果,属于基础题目.11B【解析】根据图象以及题中所给的条件,求出和,即可求得的解析式,再通过平移变换函数图象关于轴对称,求得的最小值.【详解】由于,函数最高点与最低点的高度差为,所以函数的半个周期,所以,又,则有,可得,所以,将函数向右平移个单位后函数图像关于轴对称,即平移后为偶函数,所以的最小值为1,故选:B.【点睛】该题主要考查三角函数

13、的图象和性质,根据图象求出函数的解析式是解决该题的关键,要求熟练掌握函数图象之间的变换关系,属于简单题目.12C【解析】分析:利用复数的除法运算法则:分子、分母同乘以分母的共轭复数,化简复数,然后求解复数的模.详解:,则,故选c.点睛:复数是高考中的必考知识,主要考查复数的概念及复数的运算要注意对实部、虚部的理解,掌握纯虚数、共轭复数这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.二、填空题:本题共4小题,每小题5分,共20分。13【解析】由频率分布直方图可知,解得,故不正确;这名学生中数学成绩在

14、分以下的人数为,故正确;设这名学生数学成绩的中位数为,则,解得,故正确;这名学生数学成绩的平均数为,故不正确综上,说法正确的序号是14【解析】画出可行域,通过平移基准直线到可行域边界位置,由此求得目标函数的最小值.【详解】画出可行域如下图所示,由图可知:可行域是由三点,构成的三角形及其内部,当直线过点时,取得最小值.故答案为:【点睛】本小题主要考查利用线性规划求目标函数的最值,考查数形结合的数学思想方法,属于基础题.150.42【解析】高一家长的满意度等级高于高二家长的满意度等级有三种情况,分别求出三种情况的概率,再利用加法公式即可.【详解】由已知,高一家长满意等级为不满意的概率为,满意的概率

15、为,非常满意的概率为,高二家长满意等级为不满意的概率为,满意的概率为,非常满意的概率为,高一家长的满意度等级高于高二家长的满意度等级有三种情况:1.高一家长满意,高二家长不满意,其概率为;2.高一家长非常满意,高二家长不满意,其概率为;3.高一家长非常满意,高二家长满意,其概率为.由加法公式,知事件发生的概率为.故答案为:【点睛】本题考查独立事件的概率,涉及到概率的加法公式,是一道中档题.16【解析】先将不等式对于任意恒成立,转化为任意恒成立,设,求出在内的最小值,即可求出的取值范围.【详解】解:由题可知,不等式对于任意恒成立,即,又因为,对任意恒成立,设,其中,由不等式,可得:,则,当时等号

16、成立,又因为在内有解,则,即:,所以实数的取值范围:.故答案为:.【点睛】本题考查不等式恒成立问题,利用分离参数法和构造函数,通过求新函数的最值求出参数范围,考查转化思想和计算能力.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(1)见解析(2)【解析】(1)根据等边三角形的性质证得,根据面面垂直的性质定理,证得底面,由此证得,结合证得平面,由此证得:平面平面.(2)建立空间直角坐标系,利用平面和平面的法向量,计算出平面与平面所成的锐二面角的余弦值.【详解】(1)证明:为等边三角形,为的中点,平面底面,平面底面,底面平面,又由题意可知为正方形,又,平面平面,平面平面(2)如

17、图建立空间直角坐标系,则,由已知,得,设平面的法向量为,则令,则,由(1)知平面的法向量可取为平面与平面所成的锐二面角的余弦值为.【点睛】本小题主要考查面面垂直的判定定理和性质定理,考查二面角的求法,考查空间想象能力和逻辑推理能力,属于中档题.18(1)见解析(2)见解析【解析】(1)取的中点D,连结,.根据线面平行的判定定理即得;(2)先证,和都是平面内的直线且交于点,由(1)得,再结合线面垂直的判定定理即得.【详解】(1)取的中点D,连结,.在中,P,D分别为,中点,且.在直三棱柱中,.Q为棱的中点,且.,.四边形为平行四边形,从而.又平面,平面,平面.(2)在直三棱柱中,平面.又平面,.

18、,D为中点,.由(1)知,.又,平面,平面,平面.【点睛】本题考查线面平行的判定定理,以及线面垂直的判定定理,难度不大.19()函数的单调增区间为,单调减区间为;()证明见解析;().【解析】()利用二次求导可得,所以在上为增函数,进而可得函数的单调增区间为,单调减区间为;()利用导数可得在区间上存在唯一零点,所以函数在递减,在,递增,则,进而可证;()条件等价于对于恒成立,构造函数,利用导数可得的单调性,即可得到的最小值为,再次构造函数(a),利用导数得其单调区间,进而求得最大值【详解】()当时,则,所以,又因为,所以在上为增函数,因为,所以当时,为增函数,当时,为减函数,即函数的单调增区间

19、为,单调减区间为;(),则令,则(1),所以在区间上存在唯一零点,设零点为,则,且,当时,当,所以函数在递减,在,递增,由,得,所以,由于,从而;()因为对于恒成立,即对于恒成立,不妨令,因为,所以的解为,则当时,为增函数,当时,为减函数,所以的最小值为,则,不妨令(a),则(a),解得,所以当时,(a),(a)为增函数,当时,(a),(a)为减函数,所以(a)的最大值为,则的最大值为【点睛】本题考查利用导数研究函数的单调性和最值,以及函数不等式恒成立问题的解法,意在考查学生等价转化思想和数学运算能力,属于较难题20(1)证明见解析;(2).【解析】(1)先求出,又由可判断出在上单调递减,故,令,记, 利用导数求出的最小值即可;(2)由在上不单调转化为在上有解,可得,令,分类讨论求的最大值,再求解即可.【详解】(1)已知,由可得, 又由,知在上单调递减,令,记,则在上单调递增;,在上单调递增;,(2),在上不单调,在上有正有负,在上有解,恒成立,记,则,记,在上单调增,在上单调减. 于是知(i)当即时,恒成立,在上单调增,.(ii)当时,故不满足题

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论