版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、M-测量系统分析:连续型案例: gageaiag.Mtw 背景:3名测定者对10部品反复2次TEST测量值随OP的变动测量值随部品的变动对于部品10,OP有较大分歧;所有点落在管理界限内良好大部分点落在管理界限外主变动原因:部品变动良好M-测量系统分析:离散型案例(名目型):gage名目.Mtw背景:3名测定者对30部品反复2次TEST检查者1需要再教育;检查者3需要追加训练;(反复性)两数据不能相差较大,否则说明检查者一致的判定与标准有一定差异个人与标准的一致性(再现性?)M-测量系统分析:离散型案例(顺序型):散文.Mtw背景:3名测定者对30部品反复2次TEST张四 需要再教育;张一、张
2、五需要追加训练;(反复性)两数据不能相差较大,否则说明检查者一致的判定与标准有一定差异M-正态性测定: (测定工序能力的前提)案例:背景:3名测定者对10部品反复2次TESTP-value 0.05 正态分布(P越大越好)本例:P 0.022 ,数据不服从正态分布。原因:1、Data分层混杂; 2、群间变动大;M-工序能力分析(连续型):案例:Camshaft.MTW 工程能力统计:短期工序能力长期工序能力X平均目标值 CpCpmX平均目标值 Cp Cpm 求解Zst(输入历史均值):历史均值:表示强行将它拉到中心位置不考虑偏移 Zst (Bench) 求解Zlt(无历史均值):无历史均值:
3、考虑偏移 Zlt (Bench) * Zshift Zlt (Bench) Zlt (Bench) 12.131.820.31 工序能力分析:案例:Camshaft.MTW另:capability sixpack工具M-工序能力分析(离散型):案例:bpcapa.MTW(1):二项分布的Zst缺陷率:不良率是否受样本大小影响?平均(预想)PPM226427Zlt0.75ZstZlt1.52.25M-工序能力分析(离散型):案例:bpcapa.MTW(2):Poisson分布的ZstAGraph(坐标图):案例:Pulse.MTW(1) Histograpm(直方图)单变量通过形态确认:正规分布
4、有无;异常点有无;(2) Plot(散点图)X、Y双变量通过形态确认:相关关系;确认严重脱离倾向的点;(3)Matrix Plot(行列散点图矩阵图)多变量(4)Box Plot(行列散点图矩阵图)多变量(5)Multi-vari Chart(多变因图)Sinter.MTW目的:掌握多X因子变化对Y的影响(大概); 材料和时间 存在交互作用;(5)Multi-vari Chart(多变因图)Sinter.MTW目的:掌握多X因子变化对Y的影响();倾斜越大,主效果越大无交互效果 平行;有交互效果 交叉;(5)Multi-vari Chart(多变因图)Sinter.MTW目的:掌握多X因子变化
5、对Y的影响(交互作用细节);材料、交互的P 有意;A假设测定决定标本大小:(1):1-sample Z(已知u)背景:HaN(30,100/25) H0 N(25,100/n)为测定分布差异的标本大小 有意水平 = 0.05 查出力 1 = 0.8差值:u0ua 2530-5功效值(查出力): 1 0.8标准差:sigma10A假设测定决定标本大小:(2):1-sample T(未知u)背景:HaN(30,100/25) H0 N(25,100/n)为测定分布差异的标本大小 有意水平 = 0.05 查出力 1 = 0.8差值:u0ua 2530-5功效值(查出力): 1 0.8标准差(推定值)
6、:sigma10样本数量27 已知u的1-sample Z的样本数量t 分布假定母标准偏差未制定分析;A假设测定决定标本大小:(3):1 Proportion(单样本)背景:H0:P 0.9 Ha:P 0.9 测定数据P10.8 、 P20.9 有意水平 = 0.05 查出力 1 = 0.9P1=0.8功效值(查出力): 1 0.9P2=0.9母比率0.8 实际上是否0.9以下,需要样本102个A假设测定决定标本大小:(3):2 Proportion(单样本)背景:H0:P1P2 Ha:P1 P2 有意水平 = 0.05 查出力 1 = 0.9P的备择值:实际要测定的比例? 母比率;功效值(查
7、出力): 1 0.9假设P:H0的P值(0.9)母比率0.8 实际上是否小于0.9,需要样本217个A假设测定:案例:Camshaft.MTW(1): 1-sample t(单样本)背景:对零件尺寸测定100次,数据能否说明与目标值(600)一致( = 0.05 )P-Value 0.05 Ho(信赖区间内目标值存在)可以说平均值为600A假设测定:案例:2sample-t.MTW(2): 2-sample t(单样本)背景:判断两个母集团Data的平均, 统计上是否相等(有差异)步骤:分别测定2组data是否正规分布; :测定分散的同质性; :ttest; 正态性验证:P-Value 0.0
8、5 正态分布P-Value 0.05 正态分布 等分散测定: P-Value 0.05 等分散对Data的Box-plot标准偏差的信赖区间测定方法选择:Ftest:正态分布时;Levenses test:非正态分布时; 测定平均值: P-Value 0.05 Hau1 u2A假设测定:案例:Paired t.MTW(3): Paired t(两集团从属/对应) 背景:老化实验前后样本复原时间; 10样本前后实验数据,判断老化实验前后复原时间是否有差异; (正态分布;等分散; = 0.05 )P-Value 0.05 Hau1 u2(有差异)A假设测定:(4): 1 proportion t(
9、离散单样本) 背景:为确认某不良P是否为1,检查1000样本,检出13不良, 能否说P=1%? ( = 0.05 )P-Value 0.05 H0 P=0.01A假设测定:(4): 2 proportion t(离散单样本) 背景:为确认两台设备不良率是否相等, A: 检查1000样本,检出14不良, B: 检查1200样本,检出13不良, 能否说P1=P2? ( = 0.05 )P-Value 0.05 HoP1 = P2A假设测定: Chi-Square-1.MTW(5): Chi-Square t(离散单样本)背景:确认4个不同条件下,某不良是否有差异?P-Value 0.05 HoP1
10、 = P2(无差异)应用一: 测定频度数的同质性: H0: P1=P2=Pn Ha: 至少一个不等;A假设测定: Chi-Square-2.MTW(5): Chi-Square t(离散单样本)背景:确认班次别和不同类型不良率是否相关?P-Value 0.05 Ha 两因素从属(相关)应用二: 测定边数的独立性: H0: 独立的(无相关) Ha: 从属的(有相关);班次不良类型AANOVA(分散分析): 两个以上母集团的平均是否相等;(1): One-way A(一因子多水平数)背景:确认三根弹簧弹力比较?H0: u1=u2=unHa: 至少一个不等;P-Value u无有意差;1和2可以说无
11、有意差,1和3有有意差;AANOVA(分散分析): 两个以上母集团的平均是否相等;(1): Two-way A(2因子多水平数)背景:确认生产线(因子1)、改善(因子2)影响下,测定值母平均是否相等,主效果和交互效果是否有意?生产线:P-Value 0.05 H0 u相等,无差异;生产线:信赖区间没有都重叠 u有差别对结果有影响改 善:信赖区间重叠 u无差别对结果没有影响A(相关分析): Scores.MTWP-Value 确认哪个因子影响收率,利用2(5-1)配置法输入data:表示2 5-1 部分配置的清晰度和部分实施程度. 曲线分析:-B、D、E有意;-BD、DE有交互作用;-在A=10
12、,B=2,C=120,D=180,E=3时,Y95最佳; 统计性分析:实施t-test,判断有意因子 B、D、E、BD、DE有意通过分散分析,判断1次效果、2次效果的有意性 - 主效果和交互作用效果都有意。I 最大倾斜法:一次试验 (1) 因子配置设计:背景: 反应值 : 收率(Yield) 时间35min,温度155时,Y80 因 子 : 时间(30 , 40) 温度(150,160) 确认哪个因子影响收率,利用中心点包括的22配置法在中心点实验的次数!一次试验 (2)统计性分析:实施对因子效果的 t-test, 判断有意的因子。 A, B 有意;通过分散分析判断1次效果、交互作用及曲率效果
13、的有意性。 - 1次效果(Main Effect) 有意; - 弯曲不有意,故而没有曲率效果。 一次试验 (3)确认最大倾斜方向: 线性变换的因子的水准还原为实际水准值。- 实际水平 : A ( 30,40) ,B(150,160) 为还原实际水平值, 线性变换的 值各各乘5. 利用追定的回归系数,决定最大倾斜方向()最大倾斜方向:A每增加1时,B增加0.42 的方向。StepCoded LevelUncoded Level试验结果(收率)ABAB中心点003515580.44 10.4252.181.08 110.4240157.182.90 220.8445159.283.14 331.2
14、650161.383.70 441.6855163.484.33 552.1060165.587.80 662.5265167.688.65 772.9470169.792.40 883.3675171.893.54 993.7880173.994.7810104.2085176.095.3011114.6290178.194.2112125.0495180.292.51Step由实验者配置,Step10时Y取最大值,适用因子配置;二次试验 (1) 因子配置设计:背景:通过最大倾斜法求Y最大化的因子水平,通过追加实验,确认是否最佳水准的领域; 收率(Yield) 时间(80 , 90) 温度(
15、171,181) 确认哪个因子影响收率,利用中心点包括的22配置法二次试验 (2)统计性分析: 对因子效果t-test,判断与Y有意因子- A, B 有意 -CtPt P64%,可以信赖回归模型; 通过分散分析,判断1、2次效果的有意性- 1次效果、2次效果有意 通过Lack-of-Fit Test,判断模型的 适合性 - 失拟 0.05 (不有意), 因此判断模型适合(3) 残差分析:对残差的正态分布假说的研讨 直方图、正态分布图对分散同质假说的研讨与拟合值 残差已确定为随机分布,可以进行分散同质假说研讨 (3) 坐标图分析:因子的最佳条件 - A: 289 310 - B: 11 18 预
16、想Y=79.5.(4) 数值性分析:最佳化因子水平初期设定(大概值)望大:求最大值;下限:设定最小值望目:设定目标值Y = 79.5,满足度= 1。 即意味着满足目标值要求;调整因数水平而使透过率更好。A=299.50、B=14.90时,Y(Max)79.6163I 反映表面实验2: 多个反映值(1) 因子配置设计: 试验配置 : 中心合成计划(2因子) - 反应值(Y) : Y1、Y2、Y3 - 因数/水平: A (Low = 80, High = 90), B (Low = 170, High = 180)背景:通过最大倾斜法,知道反应时间A= 85分钟、反应温度B=175F是最佳条件。
17、求可以满足3个反应变量(Y1、Y2、Y3)结果条件的因子的最佳水准。输入试验结果:A、B:选中后右键选择数据格式转换成整数(2)统计性分析: 误差项要不要 Pooling?误差项Pooling的话 Lack of fit(失拟) 的 P-value要大起来, R-sq(adj)要升高 ,或者Regression(回归)的 F值要升高 不然的话,证明现在的模型更适当2个因子的主效果、2次效果都有意,不实施Pooling. 交互作用,Pooling到误差项时,R-sq(adj)和lack of fit的P值会减少,因此不Pooling.A 的2次效果(A*A)不有意,故而Pooling到误差项.交互作用(A*B),Pooling到误差项时, R-sq(adj)和lack of fit的P值会减少因此不Pooling.Pooling 后分析结果在项中去掉A*A项后再次运行Pooling 后分析结果在项中去掉A*A、A*B项后再次运行A、B的2次效果(AA,BB)不有意,Pooling到误差项.AB交互作用,Pooling到误差项时,R-sq(adj)和lack of fit的 P值会减少因此不Pooling.(3) 坐标图分析:位于Plot的中央部的白色部分是A和
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 人员密集场所应急疏散演练
- 新生儿肺炎的治疗及护理
- 广州电影院租赁合同样本
- 美发师形象设计合同
- 铝单板施工合同住宅小区外墙翻新
- 客户索赔管理办法合同管理
- 网络安全销售合同评审指南
- 体育馆自来水施工安装协议
- 石化弱电工程安装协议模板
- 商业综合体人防设备施工合同
- 北京市第一O一中学2024-2025学年八年级上学期期中语文试题(含答案)
- 04S519小型排水构筑物(含隔油池)图集
- 2024年执法资格考试题库(附答案)
- 运用PDCA循环提高全麻患者体温检测率
- 工程施工人员安全教育培训【共55张课件】
- 篮球智慧树知到期末考试答案2024年
- 冷链产品运输记录表
- 计算机系统的组成--完整版PPT课件
- 铜芯聚氯乙烯绝缘聚氯乙烯护套控制电缆检测报告可修改
- 药剂科人员绩效考核细则
- 小学数学广角内容解读(经典实用)
评论
0/150
提交评论