




下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、三角形的高、中线和角平分线一教案背景 1. 教案内容分析 (1) 地位和作用: 学生已学习了角的平分线,线段的中点,垂线和三角形的有 关概念及边的性质等,本节课在此基础上进一步认识三角形。为今后学习三角 形的内切圆及三心等知识埋下了伏笔。(2) 重点 :三角形的高线、角平分线、中线的概念,动手画、折三角形的三条 高线、角平分线、中线自主发现它们分别交于一点。难点 :探究三角形的三条高线、角平分线、三条中线交于一点的过程及中线的 应用。2. 教案目标:(1)知识与技能目标: 通过观察、画、折等实践操作、想像、推理、交流等过 程,认识三角形的高线、角平分线、中线;会画出任意三角形的高线、角平分 线
2、、中线,通过画图、折纸了解三角形的三条高线、三条角平分线、三条中线 会交于一点。(2)过程与方法目标:经历画、折等实践操作活动过程,发展学生的空间观 念,推理能力及创新精神。学会用数学知识解决实际问题能力,发展应用和自 主探究意识,并培养学生的动手实践能力。(3)情感与态度目标 :通过对问题的解决,使学生有成就感,培养学生的合作 精神,树立学好数学的信心。二教案过程 1回忆旧知,深化提高(事先让学生准备三个三角形的纸片)ABC的高。给出一个三角形 ABC,请你回忆作出三角形 提问:( 1)你用什么作出三角形的高?(2)高有几条?(3)你能用折纸的方法找出你准备好的三角形的高吗?(4)你发现用折
3、纸折出的高与你用三角板画出的高一致吗?(4)你发现三角形的三条高有何特点?请同学们拿出已准备好的其中一个三角形纸片,回答以上问题。1 / 4 2动手实践,探究新知 三角形的角平分线的教案事先在黑板上画一个三角形 画 A的平分线??ABC,问学生如何画一个角的平分线,比如学生大约估计到另外两个三角形纸片的作用,于是把问题一提出就要让学 生能感知并有一种意识去动手实践,主动探究。我认为能做到这一点就是教案 的成功所在。学生利用手上的三角形纸片边操作边与组内其他组员讨论。能引 起争论,这是本节课的成功之处。因为这节课理论是可行的,但实际做起来却 不一定行。比如,用量角器去画一个角的平分线就存在一个很
4、大的测量误差 等。这样自然引入了三角形的角平分线概念。并提问:(1)三角形有几条角平分线?(2)你发现三角形的三条角平分线有何特点?设计意图:使学生通过画、折等实践操作活动理解三角形的角平分线概念,并 培养学生动手操作能力,自主探索、合作交流,发现三角形的三条角平分线交 于一点的规律,体现了知识的获得不是教师传授的,而是学生自己探索得到 的。三角形的中线的教案 D 是否是 BC的 在已画的 ?ABC的 A 的角平分线 AD的基础上提出问题:点 中点?那么什么是线段的中点呢?你有什么方法得到线段的中点呢?设计意图:由三角形的角平分线自然过渡到三角形的中线,并为下面画三角形 的中线作铺垫。这样学生
5、也能自然想到通过折纸的方法马上能找到线段的中 点。再用类似三角形的角平分线、高线的研究方法来研究三角形的中线,三角 形的中线是否也有类似的性质呢?学生动手画、折三角形的中线,观察、猜想、验证。并提问:(1)三角形有几条中线?2 / 4 (2)你发现三角形的三条中线有何特点?设计意图:通过类比教案三角形的中线,使学生产生知识的迁移,理解三角形的中线的概念,及掌握三角形的三条中线交于一点的性质。应用新知,体验成功(1)如图: CD,BE是?ABC的角平分线,它们相交于点 I ,则 ACD=ACB, ABCABE BI 是?的角平分线,CI 是?的角平分线。若 ABC=60度, ACB=80度,则B
6、IC= 度 你能画出 ?ABC的第三条角平分线吗?(2)、如图: 若 AD是?ABC的中线,则 BD=BC,BC=BD 若 BD=CD,则 AD是?ABC的。已知 AD是?ABC的中线,则 ?ABD的面积与 ?ADC的面积有什么关系?4联系实际,解决问题 : 一块三角形的煎饼,要把它分成大小相等的6 块,你有几种不同的分法?设计意图:一方面是为了应用三角形的中线把三角形分成面积相等的两部分来 解决实际际问题,体会数学的应用价值;同时也体现了不同的人得到不同的发 展的思想,好的同学可以得到多种分法,培养学生的创新能力。5. 回顾与思考3 / 4 学了本节课你有什么与体会 ? 设计意图 : 培养学生的语言表达能力及归纳概括能力,使知识形成体系。6. 布置作业:(1)必做题:作业本相应部分(2)选做题:1 三角形的一条 ( ),能把三角形分成两个面积相等的三角形。 A角平分线 B中线 C高 D以上都不对2 在 ABC 中, A50 , B, C 的角平分线相交于点 O,则 BOC的度数是( ) A 65 B 115 C 130 D 100 3如图,如果1 2 3,则 AM为 的角平分线,AN为 的角平分线。B M N 2 1 3 C A AD是 ABC的, BDDC。4如图,如果D是 BC的中点
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 教学内容持续更新计划
- 个人建房建筑合同样本
- 出售器材合同标准文本
- 供门窗合同标准文本
- 入职协议合同范例
- 企业与学校合同样本格式
- 上海预售合同标准文本
- Epc合同样本 课程
- 庭院花卉草坪施工方案
- 电池设计仿真考核试卷
- 2025合同模板个人车位转让合同 范本
- 企业集团文件与档案管理制度
- 2024福建漳州市九龙江集团有限公司招聘10人笔试参考题库附带答案详解
- 采矿工程毕业设计(论文)-赵固二矿180万ta新井设计
- 第3章轨道车辆牵引计算
- 基于JSP的校园网站的设计与实现论文
- 足球比赛登记表
- Bimco标准船舶管理合同(新版)
- 烟草专卖局日常绩效考评实施办法
- 基于仿生原理风电叶片气动控制研究 宋娟娟
- 商业中心项目可行性研究报告
评论
0/150
提交评论