版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1以下两个图表是2019年初的4个月我国四大城市的居民消费价格指数(上一年同月)变化图表,则以下说法错误的是( )(注:图表一每个城市的条形图从左到右依次是1、2、3、4月份
2、;图表二每个月份的条形图从左到右四个城市依次是北京、天津、上海、重庆)A3月份四个城市之间的居民消费价格指数与其它月份相比增长幅度较为平均B4月份仅有三个城市居民消费价格指数超过102C四个月的数据显示北京市的居民消费价格指数增长幅度波动较小D仅有天津市从年初开始居民消费价格指数的增长呈上升趋势2下列函数中,既是奇函数,又在上是增函数的是( )ABCD3三棱锥中,侧棱底面,则该三棱锥的外接球的表面积为( )ABCD4如图,平面ABCD,ABCD为正方形,且,E,F分别是线段PA,CD的中点,则异面直线EF与BD所成角的余弦值为( )ABCD53本不同的语文书,2本不同的数学书,从中任意取出2本
3、,取出的书恰好都是数学书的概率是( )ABCD6已知函数,关于x的方程f(x)a存在四个不同实数根,则实数a的取值范围是( )A(0,1)(1,e)BCD(0,1)7已知是第二象限的角,则( )ABCD8正项等比数列中,且与的等差中项为4,则的公比是 ( )A1B2CD9抛物线方程为,一直线与抛物线交于两点,其弦的中点坐标为,则直线的方程为( )ABCD10已知等差数列的前13项和为52,则( )A256B-256C32D-3211已知复数z满足iz2+i,则z的共轭复数是()A12iB1+2iC12iD1+2i12高三珠海一模中,经抽样分析,全市理科数学成绩X近似服从正态分布,且从中随机抽取
4、参加此次考试的学生500名,估计理科数学成绩不低于110分的学生人数约为( )A40B60C80D100二、填空题:本题共4小题,每小题5分,共20分。13已知曲线,点,在曲线上,且以为直径的圆的方程是则_14如图,某市一学校位于该市火车站北偏东方向,且,已知是经过火车站的两条互相垂直的笔直公路,CE,DF及圆弧都是学校道路,其中,以学校为圆心,半径为的四分之一圆弧分别与相切于点.当地政府欲投资开发区域发展经济,其中分别在公路上,且与圆弧相切,设,的面积为.(1)求关于的函数解析式;(2)当为何值时,面积为最小,政府投资最低?15已知,且,若恒成立,则实数的取值范围是_16记为数列的前项和,若
5、,则_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)在极坐标系中,曲线的方程为,以极点为原点,极轴所在直线为轴建立直角坐标,直线的参数方程为(为参数),与交于,两点(1)写出曲线的直角坐标方程和直线的普通方程;(2)设点;若、成等比数列,求的值18(12分)已知命题:,;命题:函数无零点.(1)若为假,求实数的取值范围;(2)若为假,为真,求实数的取值范围.19(12分)已知函数().(1)讨论的单调性;(2)若对,恒成立,求的取值范围.20(12分)已知函数.(1)当a=2时,求不等式的解集;(2)设函数.当时,求的取值范围.21(12分)在四棱锥的底面是菱形
6、, 底面, 分别是的中点, .()求证: ;()求直线与平面所成角的正弦值;(III)在边上是否存在点,使与所成角的余弦值为,若存在,确定点的位置;若不存在,说明理由.22(10分)已知函数.(1)若曲线的切线方程为,求实数的值;(2)若函数在区间上有两个零点,求实数的取值范围.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1D【解析】采用逐一验证法,根据图表,可得结果.【详解】A正确,从图表二可知,3月份四个城市的居民消费价格指数相差不大B正确,从图表二可知,4月份只有北京市居民消费价格指数低于102C正确,从图表一中可知,只有
7、北京市4个月的居民消费价格指数相差不大D错误,从图表一可知上海市也是从年初开始居民消费价格指数的增长呈上升趋势故选:D【点睛】本题考查图表的认识,审清题意,细心观察,属基础题.2B【解析】奇函数满足定义域关于原点对称且,在上即可.【详解】A:因为定义域为,所以不可能时奇函数,错误;B:定义域关于原点对称,且满足奇函数,又,所以在上,正确;C:定义域关于原点对称,且满足奇函数,在上,因为,所以在上不是增函数,错误;D:定义域关于原点对称,且,满足奇函数,在上很明显存在变号零点,所以在上不是增函数,错误;故选:B【点睛】此题考查判断函数奇偶性和单调性,注意奇偶性的前提定义域关于原点对称,属于简单题
8、目.3B【解析】由题,侧棱底面,则根据余弦定理可得 ,的外接圆圆心 三棱锥的外接球的球心到面的距离 则外接球的半径 ,则该三棱锥的外接球的表面积为 点睛:本题考查的知识点是球内接多面体,熟练掌握球的半径 公式是解答的关键4C【解析】分别以AB,AD,AP所在直线为x轴,y轴,轴,建立如图所示的空间直角坐标系,再利用向量法求异面直线EF与BD所成角的余弦值.【详解】由题可知,分别以AB,AD,AP所在直线为x轴,y轴,轴,建立如图所示的空间直角坐标系.设.则.故异面直线EF与BD所成角的余弦值为.故选:C【点睛】本题主要考查空间向量和异面直线所成的角的向量求法,意在考查学生对这些知识的理解掌握水
9、平.5D【解析】把5本书编号,然后用列举法列出所有基本事件计数后可求得概率【详解】3本不同的语文书编号为,2本不同的数学书编号为,从中任意取出2本,所有的可能为:共10个,恰好都是数学书的只有一种,所求概率为故选:D.【点睛】本题考查古典概型,解题方法是列举法,用列举法写出所有的基本事件,然后计数计算概率6D【解析】原问题转化为有四个不同的实根,换元处理令t,对g(t)进行零点个数讨论.【详解】由题意,a2,令t,则f(x)a记g(t)当t2时,g(t)2ln(t)(t)单调递减,且g(2)2,又g(2)2,只需g(t)2在(2,+)上有两个不等于2的不等根则,记h(t)(t2且t2),则h(
10、t)令(t),则(t)2(2)2,(t)在(2,2)大于2,在(2,+)上小于2h(t)在(2,2)上大于2,在(2,+)上小于2,则h(t)在(2,2)上单调递增,在(2,+)上单调递减由,可得,即a2实数a的取值范围是(2,2)故选:D【点睛】此题考查方程的根与函数零点问题,关键在于等价转化,将问题转化为通过导函数讨论函数单调性解决问题.7D【解析】利用诱导公式和同角三角函数的基本关系求出,再利用二倍角的正弦公式代入求解即可.【详解】因为,由诱导公式可得,即,因为,所以,由二倍角的正弦公式可得,所以.故选:D【点睛】本题考查诱导公式、同角三角函数的基本关系和二倍角的正弦公式;考查运算求解能
11、力和知识的综合运用能力;属于中档题.8D【解析】设等比数列的公比为q,运用等比数列的性质和通项公式,以及等差数列的中项性质,解方程可得公比q【详解】由题意,正项等比数列中,可得,即,与的等差中项为4,即,设公比为q,则,则负的舍去,故选D【点睛】本题主要考查了等差数列的中项性质和等比数列的通项公式的应用,其中解答中熟记等比数列通项公式,合理利用等比数列的性质是解答的关键,着重考查了方程思想和运算能力,属于基础题9A【解析】设,利用点差法得到,所以直线的斜率为2,又过点,再利用点斜式即可得到直线的方程.【详解】解:设,又,两式相减得:,直线的斜率为2,又过点,直线的方程为:,即,故选:A.【点睛
12、】本题考查直线与抛物线相交的中点弦问题,解题方法是“点差法”,即设出弦的两端点坐标,代入抛物线方程相减后可把弦所在直线斜率与中点坐标建立关系10A【解析】利用等差数列的求和公式及等差数列的性质可以求得结果.【详解】由,得.选A.【点睛】本题主要考查等差数列的求和公式及等差数列的性质,等差数列的等和性应用能快速求得结果.11D【解析】两边同乘-i,化简即可得出答案【详解】iz2+i两边同乘-i得z=1-2i,共轭复数为1+2i,选D.【点睛】的共轭复数为12D【解析】由正态分布的性质,根据题意,得到,求出概率,再由题中数据,即可求出结果.【详解】由题意,成绩X近似服从正态分布,则正态分布曲线的对
13、称轴为,根据正态分布曲线的对称性,求得,所以该市某校有500人中,估计该校数学成绩不低于110分的人数为人,故选:.【点睛】本题考查正态分布的图象和性质,考查学生分析问题的能力,难度容易.二、填空题:本题共4小题,每小题5分,共20分。13【解析】设所在直线方程为设点坐标分别为,都在上,代入曲线方程,两式作差可得,从而可得直线的斜率,联立直线与的方程,由,利用弦长公式即可求解.【详解】因为是圆的直径,必过圆心点,设所在直线方程为设点坐标分别为,都在上,故两式相减,可得(因为是的中点),即联立直线与的方程:又,即,即又因为,则有即.故答案为:【点睛】本题考查了直线与圆锥曲线的位置关系、弦长公式,
14、考查了学生的计算能力,综合性比较强,属于中档题.14(1);(2).【解析】(1)以点为坐标原点建立如图所示的平面直角坐标系,则,在中,设,又,故,进而表示直线的方程,由直线与圆相切构建关系化简整理得,即可表示OA,OB,最后由三角形面积公式表示面积即可;(2)令,则,由辅助角公式和三角函数值域可求得t的取值范围,进而对原面积的函数用含t的表达式换元,再令进行换元,并构建新的函数,由二次函数性质即可求得最小值.【详解】解:(1)以点为坐标原点建立如图所示的平面直角坐标系,则,在中,设,又,故,.所以直线的方程为,即.因为直线与圆相切,所以.因为点在直线的上方,所以,所以式可化为,解得.所以,.
15、所以面积为.(2)令,则,且,所以,.令,所以在上单调递减.所以,当,即时,取得最大值,取最小值.答:当时,面积为最小,政府投资最低.【点睛】本题考查三角函数的实际应用,应优先结合实际建立合适的数学模型,再按模型求最值,属于难题.15(-4,2)【解析】试题分析:因为当且仅当时取等号,所以考点:基本不等式求最值16-254【解析】利用代入即可得到,即是等比数列,再利用等比数列的通项公式计算即可.【详解】由已知,得,即,所以又,即,所以是以-4为首项,2为公比的等比数列,所以,即,所以。故答案为:【点睛】本题考查已知与的关系求,考查学生的数学运算求解能力,是一道中档题.三、解答题:共70分。解答
16、应写出文字说明、证明过程或演算步骤。17 (1) 曲线的直角坐标方程为,直线的普通方程为 ; (2) 【解析】(1)由极坐标与直角坐标的互化公式和参数方程与普通方程的互化,即可求解曲线的直角坐标方程和直线的普通方程;(2)把的参数方程代入抛物线方程中,利用韦达定理得,可得到,根据因为,成等比数列,列出方程,即可求解【详解】(1)由题意,曲线的极坐标方程可化为,又由,可得曲线的直角坐标方程为,由直线的参数方程为(为参数),消去参数,得,即直线的普通方程为; (2)把的参数方程代入抛物线方程中,得, 由,设方程的两根分别为,则,可得, 所以, 因为,成等比数列,所以,即,则,解得解得或(舍),所以
17、实数.【点睛】本题主要考查了极坐标方程与直角坐标方程,以及参数方程与普通方程的互化,以及直线参数方程的应用,其中解答中熟记互化公式,合理应用直线的参数方程中参数的几何意义是解答的关键,着重考查了推理与运算能力,属于基础题18(1) (2)【解析】(1)为假,则为真,求导,利用导函数研究函数有零点条件得的取值范围;(2)由为假,为真,知一真一假;分类讨论列不等式组可解.【详解】(1)依题意,为真,则无解,即无解;令,则,故当时,单调递增,当, 单调递减,作出函数图象如下所示,观察可知,即;(2)若为真,则,解得;由为假,为真,知一真一假;若真假,则实数满足,则;若假真,则实数满足,无解;综上所述
18、,实数的取值范围为.【点睛】本题考查根据全(特)称命题的真假求参数的问题.其思路:与全称命题或特称命题真假有关的参数取值范围问题的本质是恒成立问题或有解问题解决此类问题时,一般先利用等价转化思想将条件合理转化,得到关于参数的方程或不等式(组),再通过解方程或不等式(组)求出参数的值或范围19(1)当时,在上单调递减,在上单调递增;当时, 在上单调递增;(2).【解析】(1)求出函数的定义域和导函数, ,对讨论,得导函数的正负,得原函数的单调性;(2)法一: 由得,分别运用导函数得出函数(),的单调性,和其函数的最值,可得 ,可得的范围;法二:由得,化为令(),研究函数的单调性,可得的取值范围.
19、【详解】(1)的定义域为,当时,由得,得, 在上单调递减,在上单调递增;当时,恒成立,在上单调递增;(2)法一: 由得,令(),则,在上单调递减,即,令,则,在上单调递增,在上单调递减,所以,即, (*)当时,(*)式恒成立,即恒成立,满足题意法二:由得,令(),则,在上单调递减,即,当时,由()知在上单调递增,恒成立,满足题意当时,令,则,所以在上单调递减,又,当时,使得,当时,即,又,不满足题意,综上所述,的取值范围是【点睛】本题考查对于含参数的函数的单调性的讨论,不等式恒成立时,求解参数的范围,属于难度题.20(1);(2)【解析】试题分析:(1)当时;(2)由等价于,解之得.试题解析: (1)当时,.解不等式,得.因此,的解集为.(2)当时,当时等号成立,所以当时,等价于. 当时,等价于,无解.当时,等价于,解得.所以的取值范围是.考点:不等式选讲.21()见解析; (); ()见解析.【解析】()由题意结合几何关系可证得平面,据此证明题中的结论即可;()建立空间直角坐标系,求得直线的方向向量与平面的一个法向量,然后求解线面角的正弦值即可;()假设满足题意的点存在,设,由直线与的方向向量得到关于的方程,解方程即可确定点F的位置.【详解】()由菱形的性质可得:,结合三角形中位线的性质可知:,故,底面
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度废钢铁市场分析与预测合同3篇
- 2024年度个人经营贷款抵押担保合同2篇
- 2024年度海外院校申请文书辅导合同3篇
- 2024年度农业生态保护与修复技术服务合同范本2篇
- 2024年度品牌合作:星巴克与迪士尼合作推出限量版商品合同2篇
- 2024年中国珍珠活肤抗皱乳市场调查研究报告
- 2024年度弱电工程进度报告合同
- 2024年中国台式摆钟市场调查研究报告
- 2024年中国固本玉液清酒市场调查研究报告
- 2024年中国冲片市场调查研究报告
- 北京市西城区2022-2023学年六年级上学期数学期末试卷(含答案)
- (新版)船舶管理(二三副)考试题库及答案【正式版】
- 《危机公关处理技巧》课件
- 科学活动会跳舞的盐
- 第六单元除法 (单元测试)-2024-2025学年四年级上册数学 北师大版
- 浦东机场使用手册考试V7-R2
- 《企业内部控制流程手册》
- 2023-2024学年广东省广州市天河区八年级(上)期末英语试卷
- 2024秋期国家开放大学本科《经济学(本)》一平台在线形考(形考任务1至6)试题及答案
- 华为MA5800配置及调试手册
- 2024年建筑业10项新技术
评论
0/150
提交评论