版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高考数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知菱形的边长为2,则()A4B6CD2集合的子集的个数是( )A2B3C4D83复数 (i为虚数单位)的共轭复数是A1+iB1iC1+iD1i4定义两种运算“”与“”,对任意,满足下
2、列运算性质:,;() ,则(2020)(20202018)的值为( )ABCD5复数在复平面内对应的点为则( )ABCD6函数(其中是自然对数的底数)的大致图像为( )ABCD7已知为一条直线,为两个不同的平面,则下列说法正确的是( )A若,则B若,则C若,则D若,则8过直线上一点作圆的两条切线,为切点,当直线,关于直线对称时,( )ABCD9已知为坐标原点,角的终边经过点且,则( )ABCD10设集合,则( )ABCD11已知椭圆的左、右焦点分别为,上顶点为点,延长交椭圆于点,若为等腰三角形,则椭圆的离心率ABCD12抛物线的焦点为F,点为该抛物线上的动点,若点,则的最小值为( )ABCD二
3、、填空题:本题共4小题,每小题5分,共20分。13在直角坐标系中,直线的参数方程为(为参数),曲线的参数方程为(为参数).(1)求直线和曲线的普通方程;(2)设为曲线上的动点,求点到直线距离的最小值及此时点的坐标.14设,满足约束条件,则的最大值为_.15某校高二(4)班统计全班同学中午在食堂用餐时间,有7人用时为6分钟,有14人用时7分钟,有15人用时为8分钟,还有4人用时为10分钟,则高二(4)班全体同学用餐平均用时为_分钟.16已知二项式ax-1x6的展开式中的常数项为-160,则a=_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知函数()在定义域内有两
4、个不同的极值点.(1)求实数的取值范围;(2)若有两个不同的极值点,且,若不等式恒成立.求正实数的取值范围.18(12分)已知顶点是坐标原点的抛物线的焦点在轴正半轴上,圆心在直线上的圆与轴相切,且关于点对称.(1)求和的标准方程;(2)过点的直线与交于,与交于,求证:.19(12分)在中,内角A,B,C的对边分别为a,b,c,且满足.(1)求B;(2)若,AD为BC边上的中线,当的面积取得最大值时,求AD的长.20(12分) “绿水青山就是金山银山”,为推广生态环境保护意识,高二一班组织了环境保护兴趣小组,分为两组,讨论学习甲组一共有人,其中男生人,女生人,乙组一共有人,其中男生人,女生人,现
5、要从这人的两个兴趣小组中抽出人参加学校的环保知识竞赛.(1)设事件为 “选出的这个人中要求两个男生两个女生,而且这两个男生必须来自不同的组”,求事件发生的概率;(2)用表示抽取的人中乙组女生的人数,求随机变量的分布列和期望21(12分)设等差数列满足,.(1)求数列的通项公式;(2)求的前项和及使得最小的的值.22(10分)选修4-5:不等式选讲设函数f(x)=|x-a|,a0(1) 证明:f(x)+f(-1x)2;(2)若不等式f(x)+f(2x)12的解集非空,求a的取值范围参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1B【
6、解析】根据菱形中的边角关系,利用余弦定理和数量积公式,即可求出结果【详解】如图所示,菱形形的边长为2,且,故选B【点睛】本题主要考查了平面向量的数量积和余弦定理的应用问题,属于基础题.2D【解析】先确定集合中元素的个数,再得子集个数【详解】由题意,有三个元素,其子集有8个故选:D【点睛】本题考查子集的个数问题,含有个元素的集合其子集有个,其中真子集有个3B【解析】分析:化简已知复数z,由共轭复数的定义可得详解:化简可得z= z的共轭复数为1i.故选B点睛:本题考查复数的代数形式的运算,涉及共轭复数,属基础题4B【解析】根据新运算的定义分别得出2020和20202018的值,可得选项.【详解】由
7、() ,得(+2),又,所以, ,以此类推,202020182018,又,所以, ,以此类推,2020,所以(2020)(20202018),故选:B.【点睛】本题考查定义新运算,关键在于理解,运用新定义进行求值,属于中档题.5B【解析】求得复数,结合复数除法运算,求得的值.【详解】易知,则.故选:B【点睛】本小题主要考查复数及其坐标的对应,考查复数的除法运算,属于基础题.6D【解析】 由题意得,函数点定义域为且,所以定义域关于原点对称, 且,所以函数为奇函数,图象关于原点对称, 故选D.7D【解析】A. 若,则或,故A错误;B. 若,则或故B错误;C. 若,则或,或与相交;D. 若,则,正确
8、.故选D.8C【解析】判断圆心与直线的关系,确定直线,关于直线对称的充要条件是与直线垂直,从而等于到直线的距离,由切线性质求出,得,从而得【详解】如图,设圆的圆心为,半径为,点不在直线上,要满足直线,关于直线对称,则必垂直于直线,设,则,,故选:C【点睛】本题考查直线与圆的位置关系,考查直线的对称性,解题关键是由圆的两条切线关于直线对称,得出与直线垂直,从而得就是圆心到直线的距离,这样在直角三角形中可求得角9C【解析】根据三角函数的定义,即可求出,得出,得出和,再利用二倍角的正弦公式,即可求出结果.【详解】根据题意,解得,所以,所以,所以.故选:C.【点睛】本题考查三角函数定义的应用和二倍角的
9、正弦公式,考查计算能力.10A【解析】解出集合,利用交集的定义可求得集合.【详解】因为,又,所以.故选:A.【点睛】本题考查交集的计算,同时也考查了一元二次不等式的求解,考查计算能力,属于基础题.11B【解析】设,则,因为,所以若,则,所以,所以,不符合题意,所以,则,所以,所以,设,则,在中,易得,所以,解得(负值舍去),所以椭圆的离心率故选B12B【解析】通过抛物线的定义,转化,要使有最小值,只需最大即可,作出切线方程即可求出比值的最小值【详解】解:由题意可知,抛物线的准线方程为,过作垂直直线于,由抛物线的定义可知,连结,当是抛物线的切线时,有最小值,则最大,即最大,就是直线的斜率最大,设
10、在的方程为:,所以,解得:,所以,解得,所以,故选:【点睛】本题考查抛物线的基本性质,直线与抛物线的位置关系,转化思想的应用,属于基础题二、填空题:本题共4小题,每小题5分,共20分。13(1),;(2),.【解析】(1)利用代入消参的方法即可将两个参数方程转化为普通方程;(2)利用参数方程,结合点到直线的距离公式,将问题转化为求解二次函数最值的问题,即可求得.【详解】(1)直线的普通方程为.在曲线的参数方程中,所以曲线的普通方程为.(2)设点.点到直线的距离.当时,所以点到直线的距离的最小值为.此时点的坐标为.【点睛】本题考查将参数方程转化为普通方程,以及利用参数方程求距离的最值问题,属中档
11、题.1429【解析】由约束条件作出可行域,化目标函数为以原点为圆心的圆,数形结合得到最优解,联立方程组求得最优解的坐标,代入目标函数得答案.【详解】由约束条件作出可行域如图:联立,解得,目标函数是以原点为圆心,以为半径的圆,由图可知,此圆经过点A时,半径最大,此时也最大,最大值为.所以本题答案为29.【点睛】线性规划问题,首先明确可行域对应的是封闭区域还是开放区域、分界线是实线还是虚线,其次确定目标函数的几何意义,是求直线的截距、两点间距离的平方、直线的斜率、还是点到直线的距离等等,最后结合图形确定目标函数最值取法、值域范围.157.5【解析】分别求出所有人用时总和再除以总人数即可得到平均数.
12、【详解】故答案为:7.5【点睛】此题考查求平均数,关键在于准确计算出所有数据之和,易错点在于概念辨析不清导致计算出错.162【解析】在二项展开式的通项公式中,令x的幂指数等于0,求出r的值,即可求得常数项,再根据常数项等于-160求得实数a的值【详解】二项式(ax-1x)6的展开式中的通项公式为Tr+1=C6r(-1)ra6-rx6-2r,令6-2r=0,求得r=3,可得常数项为-C63a3=-160,a=2,故答案为:2【点睛】本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(1);(2).【解
13、析】(1)求导得到有两个不相等实根,令,计算函数单调区间得到值域,得到答案.(2),是方程的两根,故,化简得到,设函数,讨论范围,计算最值得到答案.【详解】(1)由题可知有两个不相等的实根,即:有两个不相等实根,令,;,故在上单增,在上单减,.又,时,;时,即.(2)由(1)知,是方程的两根,则因为在单减,又,即,两边取对数,并整理得:对恒成立,设,当时,对恒成立,在上单增,故恒成立,符合题意;当时,时,在上单减,不符合题意.综上,.【点睛】本题考查了根据极值点求参数,恒成立问题,意在考查学生的计算能力和综合应用能力.18(1),;(2)证明见解析.【解析】分析:(1)设的标准方程为,由题意可
14、设结合中点坐标公式计算可得的标准方程为半径,则的标准方程为 (2)设的斜率为,则其方程为,由弦长公式可得联立直线与抛物线的方程有设,利用韦达定理结合弦长公式可得 则即 详解:(1)设的标准方程为,则已知在直线上,故可设 因为关于对称,所以解得 所以的标准方程为 因为与轴相切,故半径,所以的标准方程为 (2)设的斜率为,那么其方程为,则到的距离,所以由消去并整理得:设,则,那么 所以所以,即 点睛:(1)直线与抛物线的位置关系和直线与椭圆、双曲线的位置关系类似,一般要用到根与系数的关系;(2)有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点,若过抛物线的焦点,可直接使用公式|AB|x1x
15、2p,若不过焦点,则必须用一般弦长公式19(1);(2).【解析】(1)利用正弦定理及可得,从而得到;(2)在中,利用余弦定可得,而,故当时,的面积取得最大值,此时,在中,再利用余弦定理即可解决.【详解】(1)由正弦定理及已知得,结合,得,因为,所以,由,得.(2)在中,由余弦定得,因为,所以,当且仅当时,的面积取得最大值,此时.在中,由余弦定理得.即.【点睛】本题考查正余弦定理解三角形,涉及到基本不等式求最值,考查学生的计算能力,是一道容易题.20(); ()分布列见解析,.【解析】()直接利用古典概型概率公式求 . ()先由题得可能取值为,再求x的分布列和期望.【详解】() ()可能取值为
16、,的分布列为0123.【点睛】本题主要考查古典概型的计算,考查随机变量的分布列和期望的计算,意在考查学生对这些知识的理解掌握水平和分析推理能力.21(1)(2);时,取得最小值【解析】(1)设等差数列的公差为,由,结合已知,联立方程组,即可求得答案.(2)由(1)知,故可得,即可求得答案.【详解】(1)设等差数列的公差为,由及,得解得数列的通项公式为(2)由(1)知时,取得最小值.【点睛】本题解题关键是掌握等差数列通项公式和前项和公式,考查了分析能力和计算能力,属于基础题.22 (1)见解析.(1) (-1,0).【解析】试题分析:(1)直接计算f(x)+f(-1x)=|x-a|+|1x+a|,由绝对值不等式的性质及基本不等式证之即可;(1)f(x)+f(2x)=|x-a|+|2x-a|,分区间讨论去绝对值符号分别解不等式即可.试题解析: (1)证明:函数f(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 服装行业客服工作总结耐心服务提升时尚感
- 服装纺织行业会计工作的难点
- 医药原料行业采购工作总结
- 礼品行业助理职责介绍
- 食品饮料行业技术职位总结
- 快餐店服务员工作感悟
- 幼儿园大班开学第一课教案(合集三篇)
- 课堂教学读后感
- 房地产顾问的职业成就总结
- 污水处理行业营销工作总结
- 风能发电对养殖场废弃物处理的影响
- 2024年秋新人教版地理七年级上册课件 第一章 地球 1.3.1 地球的自转
- 2024年新高考英语全国卷I分析教学设计
- 检验科生物安全手册
- 2024-2025学年高中英语学业水平合格性考试模拟测试卷五含解析
- 孤残儿童护理员技能鉴定考试题库(含答案)
- HG∕T 2374-2017 搪玻璃闭式贮存容器
- 求是文章《开创我国高质量发展新局面》专题课件
- ISO∕TR 56004-2019创新管理评估-指南(雷泽佳译-2024)
- 车祸私了赔偿协议书范本
- DB5334-T 12.1-2024 地理标志证明商标 香格里拉藏香猪 第1部分:品种要求
评论
0/150
提交评论