信号与系统英文版教学课件:ch2 Linear Time-invariant Systems_第1页
信号与系统英文版教学课件:ch2 Linear Time-invariant Systems_第2页
信号与系统英文版教学课件:ch2 Linear Time-invariant Systems_第3页
信号与系统英文版教学课件:ch2 Linear Time-invariant Systems_第4页
信号与系统英文版教学课件:ch2 Linear Time-invariant Systems_第5页
已阅读5页,还剩37页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、1INTRODUCTIONLTI systems possesses the superposition property.Represent signals as linear combinations of delayed impulses .Convolution sum or convolution integral.linear constant-coefficient difference or differential equations. 21) The Representation of Discrete-time Signals in Terms of ImpulsesIf

2、 xn=un,then Sifting Property of Unit Sample: 1. Discrete-Time LTI: Convolution Sum32) The Discrete-time Unit Impulse Response of LTI SystemsLTIxn=nyn=hn Unit Impulse Response hn :response of the LTI system to the unit sample n. n hn Why do we need it? 43) The Discrete-time Response of LTI Systems to

3、 any Input Signal: Convolution SumLTIxnyn=?Solution:Question: n hnn-k hn-kxkn-k xk hn-kThe response yn to xn is the weighted linear combination of delayed unit sample responses.5Convolution SumSoRepresenting the convolution operation symbolically as: yn = xn * hn- Convolution Sum That is, the unit i

4、mpulse response -hn can fully characterize an LTI system.Summary on calculating convolution sumTime Inversal: hk h-kTime Shift: h-k hn-kMultiplication: xkhn-kSumming: 6Example 2.1 Consider a LTI system with unit sample response hn and input xn, as illustrated in Figure (a). Calculate the convolution

5、 sum (convolution) of these two sequences graphically. nxn 0 1 2nhn-2 0 2(a) 122kxk 0 1 2kh-k -2 0 2 (b)2217kxk 0 1 22kh-k -2 0 221n=0kh-1-k -3 -2 0 121n=-1kh1-k -1 0 1 2 321n=18Example 2.2 Consider an input xn and a unit sample response hn given byDetermine and plot the output Using the geometrical

6、 sum formula to evaluate last equation, we have 9n21yn101) The Representation of Continuous-time Signals in Terms of ImpulsesDiscrete-time:Continuous-time:Why?t -02 k x(t)Staircase approximation to a continuous-time signal x(t)2. Continuous-Time LTI: Convolution Integral11Therefore: What is this? De

7、fine We have the expression: as , the summing approaches an integral and is the unit impulse function 122) The Continuous-time Unit Impulse Response of LTI SystemsLTIx(t)=(t)y(t)=h(t)Unit Impulse Response h(t) : the response of the LTI system to the input . 3) The Continuous-time Response of LTI Sys

8、tems to any Input Signal: Convolution IntegralLTIx(t)y(t)=?13Give the as the response of a continuous-time LTI system to the input , then the response of the system to pulse is Thus, the response to isAs , in addition, the summing becomes an integral. Therefore, - Convolution Integral 14Represent co

9、nvolution integral of two signals x(t) and h(t) symbolically as:Convolution IntegralA continuous-time LTI system is completely characterized by its unit impulse response h(t) .Computation of Convolution Integral: Time Inversal: h() h(- )Time Shift: h(-) h(t- )Multiplication: x()h(t- )Integrating: 15

10、Example 2.3 Consider the convolution of the following two signals, which are depicted in (a): 2 x(t) 1 h(t) 0 1 2 t 0 1 2 3 t -1 (a) x() h(-) -2 0 1 2 3 t=0 x() h(t-) -2 0 1 2 3 t 0t1 When t1 : x()h(t-) = 0So 16 x() h(t-) -2 0 1 t 2 3 1t2 x() h(t-)-2 0 1 2 t 3 2t3 x() h(t-) -2 0 1 2 3 t 4 3t4 17 x()

11、 h(t-) -2 0 1 2 3 4 t 5 4t5 y(t) 0 1 3 5 -2 x() h(t-) -2 0 1 2 3 4 5 t t 5 When t5 : x()h(t-) = 0So 18 h(t) or hn completely characterizes an LTI system What property should h(t) or hn have for the LTI system to be stable, causal, memoryless and invertible? 3. Properties of LTI Systems191) The Commu

12、tative PropertyDiscrete time: xn*hn=hn*xnContinuous time: x(t)*h(t)=h(t)*x(t)h(t)x(t)y(t)=x(t)*h(t)x(t)h(t)y(t)=h(t)*x(t)2) The Distributive PropertyDiscrete time: xn*h1n+h2n=xn*h1n+xn*h2nContinuous time: x(t)*h1(t)+h2(t)=x(t)*h1(t)+x(t)*h2(t)3. Properties of LTI Systems20h1(t)+h2(t)x(t)y(t)=x(t)*h1

13、(t)+h2(t)h1(t)x(t)y(t)=x(t)*h1(t)+x(t)*h2(t)h2(t)3) The Associative PropertyDiscrete time: xn*h1n*h2n=xn*h1n*h2nContinuous time: x(t)*h1(t)*h2(t)=x(t)*h1(t)*h2(t)21h1(t)*h2(t)x(t)y(t)=x(t)*h1(t)*h2(t)h1(t)x(t)y(t)=x(t)*h1(t)*h2(t)h2(t)4) LTI System with and without MemoryMemoryless system: Discrete

14、time: yn=kxn, hn=? Continuous time: y(t)=kx(t), h(t)=?k (t) x(t)y(t)=kx(t)=x(t)*k(t)k n xnyn=kxn=xn*kn225) Invertibility of LTI systemOriginal system: h(t)Reverse system: h1(t)(t) x(t)x(t)*(t)=x(t)So, for the invertible system: h(t)*h1(t)=(t) or hn*h1n=nh(t) x(t)x(t)h1(t) 6) Causality for LTI system

15、Discrete time system satisfy: hn=0 for n0Continuous time system satisfy: h(t)=0 for t0Why?237) Stability for LTI systemDefinition of stability:Every bounded input produces a bounded output. If |xn|B, the sufficient and necessary condition for |yn|A isDiscrete time system:Continuous time system:If |x

16、(t)|B, the condition for |y(t)|A is248) The Unit Step Response of LTI systemThe unit step response, sn or s(t), is the output of an LTI system when input xn=un or x(t)=u(t). A.The step response of a discrete-time LTI system is the running sum of its sample response: B.The impulse response of a discr

17、ete-time LTI system is the first difference of its step response: hn / h(t) n/ (t)hn/h(t)un/u(t)sn=un*hn /s(t)=u(t)*h(t)25C.The unit step response of a continuous-time LTI system is the running integral of its impulse response: D.The unit impulse response of a continuous-time LTI system is the first

18、 derivative of the unit step response :E.Properties of convolution integral:Derivative property: Integral property: Combining the two properties, we have Solution Example 2.3 with Properties E : y(t) = x(t) * h(t) = dx(t)/dt * -t h(x)dx = 2d(t-1)-2d(t-3)*f (t) =2 d(t-1)*f (t)-2d(t-3)*f (t) =2f (t-1)

19、-2f (t-3) x(t) h(t) dx(t)/dt -t h(x)dx=f (t) 0 1 3 t 0 1 2 t y(t) 0 1 3 5 -2 2f (t-1) -2f (t-3)2627: input signal; : output signal. Ci (t)VsR + 1) Continuous-time system: Differential EquationLinear constant-coefficient differential equationLinear constant-coefficient differential(difference) equati

20、on provides an implicit relationship between the input and output rather than an explicit expression for the system output as a function of the input . 4. Causal LTI Systems described by Differential and Difference Equations28How to find the system output given an input signal? natural response Forc

21、ed response We must specify one or more auxiliary conditions to solve a differential (difference) equation . Initial rest: for a causal LTI system, if x(t)=0 for tt0, then y(t) must also equal 0 for t t0. 29A general Nth-order linear constant-coefficient differential equation:orand initial condition

22、: y(t0), y(t0), , y(N-1)(t0) ( N values )For a causal LTI system:302) Discrete-time system: Difference EquationA general Nth-order linear constant-coefficient difference equation:orand initial condition: y0, y-1, , y-(N-1) ( N values )Under initial rest, the system described by linear constant-coeff

23、icient differential(difference) equation is causal and LTI.31General solutions to such difference equations: later in Chapter 5 or 10. Second resolution:(recursive method)First resolution:N auxiliary conditions: 323) Block Diagram Representations(1) Dicrete-time systemBasic elements: A. An adder B.

24、Multiplication by a coefficient C. An unit delayFirst-order difference equation : addition delay multiplication 33Example: yn+ayn-1=bxn (2) Continuous-time system First-order differential equation :differentiation Three basic elements in block diagram: adder, multiplier and integrator . 34Example: y

25、(t)+ay(t)=bx(t) Such block diagrams can also be developed for higher order systems. 355. Singularity Functions 1)The unit impulse as an idealized short pulse(1)(2)Important: for small , they both behaves the same from an LTI system, see Figure 2.34.362)Defining the unit impulse through convolution- Operational definition (运算定义)Or,equivalently, The primary importance of the unit impulse is not what it is at each value of t, but rather what it do

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论