版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、1INTRODUCTIONLTI systems possesses the superposition property.Represent signals as linear combinations of delayed impulses .Convolution sum or convolution integral.linear constant-coefficient difference or differential equations. 21) The Representation of Discrete-time Signals in Terms of ImpulsesIf
2、 xn=un,then Sifting Property of Unit Sample: 1. Discrete-Time LTI: Convolution Sum32) The Discrete-time Unit Impulse Response of LTI SystemsLTIxn=nyn=hn Unit Impulse Response hn :response of the LTI system to the unit sample n. n hn Why do we need it? 43) The Discrete-time Response of LTI Systems to
3、 any Input Signal: Convolution SumLTIxnyn=?Solution:Question: n hnn-k hn-kxkn-k xk hn-kThe response yn to xn is the weighted linear combination of delayed unit sample responses.5Convolution SumSoRepresenting the convolution operation symbolically as: yn = xn * hn- Convolution Sum That is, the unit i
4、mpulse response -hn can fully characterize an LTI system.Summary on calculating convolution sumTime Inversal: hk h-kTime Shift: h-k hn-kMultiplication: xkhn-kSumming: 6Example 2.1 Consider a LTI system with unit sample response hn and input xn, as illustrated in Figure (a). Calculate the convolution
5、 sum (convolution) of these two sequences graphically. nxn 0 1 2nhn-2 0 2(a) 122kxk 0 1 2kh-k -2 0 2 (b)2217kxk 0 1 22kh-k -2 0 221n=0kh-1-k -3 -2 0 121n=-1kh1-k -1 0 1 2 321n=18Example 2.2 Consider an input xn and a unit sample response hn given byDetermine and plot the output Using the geometrical
6、 sum formula to evaluate last equation, we have 9n21yn101) The Representation of Continuous-time Signals in Terms of ImpulsesDiscrete-time:Continuous-time:Why?t -02 k x(t)Staircase approximation to a continuous-time signal x(t)2. Continuous-Time LTI: Convolution Integral11Therefore: What is this? De
7、fine We have the expression: as , the summing approaches an integral and is the unit impulse function 122) The Continuous-time Unit Impulse Response of LTI SystemsLTIx(t)=(t)y(t)=h(t)Unit Impulse Response h(t) : the response of the LTI system to the input . 3) The Continuous-time Response of LTI Sys
8、tems to any Input Signal: Convolution IntegralLTIx(t)y(t)=?13Give the as the response of a continuous-time LTI system to the input , then the response of the system to pulse is Thus, the response to isAs , in addition, the summing becomes an integral. Therefore, - Convolution Integral 14Represent co
9、nvolution integral of two signals x(t) and h(t) symbolically as:Convolution IntegralA continuous-time LTI system is completely characterized by its unit impulse response h(t) .Computation of Convolution Integral: Time Inversal: h() h(- )Time Shift: h(-) h(t- )Multiplication: x()h(t- )Integrating: 15
10、Example 2.3 Consider the convolution of the following two signals, which are depicted in (a): 2 x(t) 1 h(t) 0 1 2 t 0 1 2 3 t -1 (a) x() h(-) -2 0 1 2 3 t=0 x() h(t-) -2 0 1 2 3 t 0t1 When t1 : x()h(t-) = 0So 16 x() h(t-) -2 0 1 t 2 3 1t2 x() h(t-)-2 0 1 2 t 3 2t3 x() h(t-) -2 0 1 2 3 t 4 3t4 17 x()
11、 h(t-) -2 0 1 2 3 4 t 5 4t5 y(t) 0 1 3 5 -2 x() h(t-) -2 0 1 2 3 4 5 t t 5 When t5 : x()h(t-) = 0So 18 h(t) or hn completely characterizes an LTI system What property should h(t) or hn have for the LTI system to be stable, causal, memoryless and invertible? 3. Properties of LTI Systems191) The Commu
12、tative PropertyDiscrete time: xn*hn=hn*xnContinuous time: x(t)*h(t)=h(t)*x(t)h(t)x(t)y(t)=x(t)*h(t)x(t)h(t)y(t)=h(t)*x(t)2) The Distributive PropertyDiscrete time: xn*h1n+h2n=xn*h1n+xn*h2nContinuous time: x(t)*h1(t)+h2(t)=x(t)*h1(t)+x(t)*h2(t)3. Properties of LTI Systems20h1(t)+h2(t)x(t)y(t)=x(t)*h1
13、(t)+h2(t)h1(t)x(t)y(t)=x(t)*h1(t)+x(t)*h2(t)h2(t)3) The Associative PropertyDiscrete time: xn*h1n*h2n=xn*h1n*h2nContinuous time: x(t)*h1(t)*h2(t)=x(t)*h1(t)*h2(t)21h1(t)*h2(t)x(t)y(t)=x(t)*h1(t)*h2(t)h1(t)x(t)y(t)=x(t)*h1(t)*h2(t)h2(t)4) LTI System with and without MemoryMemoryless system: Discrete
14、time: yn=kxn, hn=? Continuous time: y(t)=kx(t), h(t)=?k (t) x(t)y(t)=kx(t)=x(t)*k(t)k n xnyn=kxn=xn*kn225) Invertibility of LTI systemOriginal system: h(t)Reverse system: h1(t)(t) x(t)x(t)*(t)=x(t)So, for the invertible system: h(t)*h1(t)=(t) or hn*h1n=nh(t) x(t)x(t)h1(t) 6) Causality for LTI system
15、Discrete time system satisfy: hn=0 for n0Continuous time system satisfy: h(t)=0 for t0Why?237) Stability for LTI systemDefinition of stability:Every bounded input produces a bounded output. If |xn|B, the sufficient and necessary condition for |yn|A isDiscrete time system:Continuous time system:If |x
16、(t)|B, the condition for |y(t)|A is248) The Unit Step Response of LTI systemThe unit step response, sn or s(t), is the output of an LTI system when input xn=un or x(t)=u(t). A.The step response of a discrete-time LTI system is the running sum of its sample response: B.The impulse response of a discr
17、ete-time LTI system is the first difference of its step response: hn / h(t) n/ (t)hn/h(t)un/u(t)sn=un*hn /s(t)=u(t)*h(t)25C.The unit step response of a continuous-time LTI system is the running integral of its impulse response: D.The unit impulse response of a continuous-time LTI system is the first
18、 derivative of the unit step response :E.Properties of convolution integral:Derivative property: Integral property: Combining the two properties, we have Solution Example 2.3 with Properties E : y(t) = x(t) * h(t) = dx(t)/dt * -t h(x)dx = 2d(t-1)-2d(t-3)*f (t) =2 d(t-1)*f (t)-2d(t-3)*f (t) =2f (t-1)
19、-2f (t-3) x(t) h(t) dx(t)/dt -t h(x)dx=f (t) 0 1 3 t 0 1 2 t y(t) 0 1 3 5 -2 2f (t-1) -2f (t-3)2627: input signal; : output signal. Ci (t)VsR + 1) Continuous-time system: Differential EquationLinear constant-coefficient differential equationLinear constant-coefficient differential(difference) equati
20、on provides an implicit relationship between the input and output rather than an explicit expression for the system output as a function of the input . 4. Causal LTI Systems described by Differential and Difference Equations28How to find the system output given an input signal? natural response Forc
21、ed response We must specify one or more auxiliary conditions to solve a differential (difference) equation . Initial rest: for a causal LTI system, if x(t)=0 for tt0, then y(t) must also equal 0 for t t0. 29A general Nth-order linear constant-coefficient differential equation:orand initial condition
22、: y(t0), y(t0), , y(N-1)(t0) ( N values )For a causal LTI system:302) Discrete-time system: Difference EquationA general Nth-order linear constant-coefficient difference equation:orand initial condition: y0, y-1, , y-(N-1) ( N values )Under initial rest, the system described by linear constant-coeff
23、icient differential(difference) equation is causal and LTI.31General solutions to such difference equations: later in Chapter 5 or 10. Second resolution:(recursive method)First resolution:N auxiliary conditions: 323) Block Diagram Representations(1) Dicrete-time systemBasic elements: A. An adder B.
24、Multiplication by a coefficient C. An unit delayFirst-order difference equation : addition delay multiplication 33Example: yn+ayn-1=bxn (2) Continuous-time system First-order differential equation :differentiation Three basic elements in block diagram: adder, multiplier and integrator . 34Example: y
25、(t)+ay(t)=bx(t) Such block diagrams can also be developed for higher order systems. 355. Singularity Functions 1)The unit impulse as an idealized short pulse(1)(2)Important: for small , they both behaves the same from an LTI system, see Figure 2.34.362)Defining the unit impulse through convolution- Operational definition (运算定义)Or,equivalently, The primary importance of the unit impulse is not what it is at each value of t, but rather what it do
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 西南林业大学《材料科学与工程基础》2022-2023学年第一学期期末试卷
- 西京学院《西京青曲课堂相声》2021-2022学年第一学期期末试卷
- 职称申报诚信承诺书(个人)附件4
- 西华师范大学《篆书技法》2021-2022学年第一学期期末试卷
- 西华师范大学《现代数学概论》2022-2023学年第一学期期末试卷
- 2024年职业资格-养老护理员养老基础知识模拟考试题库试卷
- 西华师范大学《人体解剖生理学》2021-2022学年第一学期期末试卷
- 西华师范大学《地理多媒体课件制作》2023-2024学年第一学期期末试卷
- 西昌学院《项目设计实训》2022-2023学年第一学期期末试卷
- 电力专项测试题附答案
- 安全风险分级管控清单
- OBE理念与人才培养方案制定PPT课件
- 离任审计工作方案 样稿
- 四大名著称四大小说三国演义西游记水浒传红楼梦中国古典章回小说PPT资料课件
- 港珠澳大桥项目管理案例分析PPT课件
- 员工入职体检表
- GB∕T 12810-2021 实验室玻璃仪器 玻璃量器的容量校准和使用方法
- 一般跨越架搭设施工方案
- 小学体育《网球传统正手击球的原地抛球击球技术》教案
- RPG游戏概要设计文档
- 水泥混凝土路面施工验收规范(完整版)
评论
0/150
提交评论