版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、. z.-初一(七年级)上册数学知识点:一元一次方程1.一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不 是零的整式方程是一元一次方程。2.一元一次方程的标准形式: a*+b=0(*是未知数, a 、b 是已知数,且 a0)。 3.条件:一元一次方程必须同时满足4个条件:(1)它是等式;(2)分母中不含有未知数;(3)未知数最高次项为1;(4)含未知数的项的系数不为0.4.等式的性质:等式的性质一:等式两边同时加一个数或减去同一个数或同一个整式,等式仍然成立。 等式的性质二:等式两边同时扩大或缩小相同的倍数(0除外),等式仍然成立。等式的性质三:等式两边同时乘方(或
2、开方),等式仍然成立。解方程都是依据等式的这三个性质等式的性质一:等式两边同时加一个数或减同一个 数,等式仍然成立。5.合并同类项(1)依据:乘法分配律(2)把未知数相同且其次数也相同的相合并成一项;常数计算后合并成一项(3)合并时次数不变,只是系数相加减。 6.移项(1)含有未知数的项变号后都移到方程左边,把不含未知数的项移到右边。(2)依据:等式的性质(3)把方程一边*项移到另一边时,一定要变号。 7.一元一次方程解法的一般步骤:使方程左右两边相等的未知数的值叫做方程的解。一般解法:(1)去分母:在方程两边都乘以各分母的最小公倍数;(2)去括号:先去小括号,再去中括号,最后去大括号;(记住
3、如括号外有减号的话一定要 变号)(3)移项:把含有未知数的项都移到方程的一边,其他项都移到方程的另一边;移项要变 号(4)合并同类项:把方程化成 a*=b(a0)的形式;(5)系数化成1:在方程两边都除以未知数的系数 a,得到方程的解*=b/a. 8.同解方程如果两个方程的解相同,则这两个方程叫做同解方程。9.方程的同解原理:(1)方程的两边都加或减同一个数或同一个等式所得的方程与原方程是同解方程。 (2)方程的两边同乘或同除同一个不为0的数所得的方程与原方程是同解方程。 10.列一元一次方程解应用题:(1)读题分析法: 多用于“和,差,倍,分问题”仔细读题,找出表示相等关系的关键字,例如:
4、“大,小,多,少,是,共,合,为, 完成,增加,减少,配套 - ”,利用这些关键字列出文字等式,并且据题意设出未知数, 最后利用题目中的量与量的关系填入代数式,得到方程. z.-(2)画图分析法: 多用于“行程问题”利用图形分析数学问题是数形结合思想在数学中的体现, 仔细读题, 依照题意画出有关 图形, 使图形各部分具有特定的含义, 通过图形找相等关系是解决问题的关键, 从而取得布 列方程的依据,最后利用量与量之间的关系(可把未知数看做已知量),填入有关的代数式是获得方程的基础.11. 列方程解应用题的常用公式:12.做一元一次方程应用题的重要方法:(1)认真审题 (审题)(2)分析已知和未知
5、量(3)找一个合适的等量关系(4)设一个恰当的未知数(5)列出合理的方程(列式)(6)解出方程(解题)(7)检验(8)写出答案(作答)一元一次方程牵涉到许多的实际问题,例如工程问题、种植面积问题、比赛比分问题、路程问题,相遇问题、逆流顺流问题、相向问题分段收费问题、盈亏、利润问题初一(七年级)上册数学知识点:有理数本章内容要求学生正确认识有理数的概念,在实际生活和学习数轴的基础上,理解正负数、 相反数、 绝对值的意义所在。 重点利用有理数的运算法则解决实际问题, 体验数学发展的一 个重要原因是生活实际的需要。一、目标与要求1. 了解正数与负数是从实际需要中产生的。 2. 能正确判断一个数是正数
6、还是负数,明确0 既不是正数也不是负数。 3.理解有理数除法的意义,熟练掌握有理数除法法则,会进行有理数的除法运算; 4. 了解倒数概念,会求给定有理数的倒数; 5.通过将除法运算转化为乘法运算,培养学生的转化的思想;通过有理数的除法二、重点正、负数的概念;正确理解数轴的概念和用数轴上的点表示有理数;有理数的加法法则;除法法则和除法运算。三、难点负数的概念、正确区分两种不同意义的量;数轴的概念和用数轴上的点表示有理数;异号两数相加的法则;根据除法是乘法的逆运算,归纳出除法法则及商的符号的确定。四、知识框五、知识点、概念总结1.正数:比0大的数叫正数。2. 负数:比0 小的数叫负数。3.有理数:
7、(1)凡能写成q/p(p ,q 为整数且 p 不等于0)形式的数,都是有理数。正整数、 0 、负整数. z.-统称整数;正分数、负分数统称分数;整数和分数统称有理数。注意: 0即不是正数,也不是负数;-a 不一定是负数, +a 也不一定是正数;p 不是有理数;(2)有理数的分类:4.数轴:数轴是规定了原点、正方向、单位长度的一条直线。5.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)相反数的和为0等价于 a+b=0等价于a 、b 互为相反数。 6.绝对值:(1)正数的绝对值是其本身, 0的绝对值是0,负数的绝对值是它的相反数; 注意:绝对值的意义是
8、数轴上表示*数的点离开原点的距离;(2)绝对值可表示为:绝对值的问题经常分类讨论;7.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数- 小数0,小数- 大数0 一 或 ;ab0 一 a:不等式组的解集是 x ab a(x b a(x a:不等式的组解集是 x b a(x ab alx b:不等式组的解集是 a x blx blx b9 几个重要的判断: 一 x、y是正数 , 一 x、y是负数 ,几何 A 级概念: (要求深刻理解、熟练
9、运用、主要用于几何证明)1. 角平分线的定义:一条射线把一个角分成两个相等的部分,这条射线叫角的平分线. (如图)O2 线段中点的定义:点 C 把线段 AB 分成两条相等的线段,点 C 叫线段中点.(如图)几何表达式举例:(1) OC 平分AOB AOC=BOC(2) AOC=BOCOC 是AOB 的平分线几何表达式举例:(1) C 是 AB 中点 AC = BCACB. z.-. z.(2) AC = BCA C BC 是 AB 中点3 等量公理: (如图) 几何表达式举例:(1)等量加等量和相等; (2)等量减等量差相等; (1) AC=DB(3)等量的等倍量相等; (4)等量的等分量相等
10、. AC+CD=DB+CD即 AD=BCAB (2) AOC=DOBC AOC- BOC= DOB- A C D B (1) O D (2) BOCA E 即AOB=DOCMC (3) BOC=GFMO B F G (3) 又AOB=2BOCEFG=2GFMAOB=EFGA C B E G F (4)(4) AC= 1 AB ,EG= 1 EF 2 2又AB=EFAC=EG4 等量代换:几何表达式举例:a=cb=ca=b几何表达式举例:a=c b=d又c=da=b几何表达式举例:a=c+db=c+da=b5 补角重要性质: 几何表达式举例:同角或等角的补角相等.(如图)12341+3=1802
11、+4=180又3=41=26 余角重要性质: 几何表达式举例:同角或等角的余角相等.(如图)1 32 41+3=902+4=90又3=41=27 对顶角性质定理: A D 几何表达式举例:对顶角相等.(如图) O AOC=DOBBC-几何表达式举例:(1) AB、CD 互相垂直COB=90(2) COB=90AB、CD 互相垂直D几何表达式举例:AB EF又CD EFFAB CD几何表达式举例:ACACGEFHGEFHBDBD(1) GEB=EFD AB CD(2) AEF=DFE AB CD(3) BEF+ DFE=180 AB CD几何表达式举例:(1) AB CD GEB=EFD(2)
12、AB CD AEF=DFE(3) AB CD BEF+DFE=1808 两条直线垂直的定义:两条直线相交成四个角,有一个角是直角,这两条直线互相垂直.(如图)9 三直线平行定理:两条直线都和第三条直线平行, 则, 这两条直线也平行.(如图)10 平行线判定定理:两条直线被第三条直线所截:(1)若同位角相等,两条直线平行; (如图)(2)若内错角相等,两条直线平行; (如图)(3)若同旁内角互补,两条直线平行.(如图)11 平行线性质定理:(1)两条平行线被第三条直线所截,同位角 相等; (如图)(2)两条平行线被第三条直线所截,内错角 相等; (如图)(3)两条平行线被第三条直线所截,同旁内
13、角互补.(如图)COCEBDAAB几何 B 级概念: (要求理解、会讲、会用,主要用于填空和选择题)一 基本概念:直线、射线、线段、角、直角、平角、周角、锐角、钝角、互为补角、互为余角、邻补 角、两点间的距离、相交线、平行线、垂线段、垂足、对顶角、延长线与反向延长线、同位 角、 内错角、同旁内角、点到直线的距离、平行线间的距离、命题、 真命题、假命题、定义、 公理、定理、推论、证明.二 定理:1.直线公理:过两点有且只有一条直线.2.线段公理:两点之间线段最短. z. z.-3.有关垂线的定理:(1)过一点有且只有一条直线与已知直线垂直;(2)直线外一点与直线上各点连结的所有线段中,垂线段最短
14、.4.平行公理:经过直线外一点,有且只有一条直线与这条直线平行.三 公式:直角=90,平角=180,周角=360, 1=60, 1=60 .四 常识:1定义有双向性,定理没有.2直线不能延长;射线不能正向延长,但能反向延长;线段能双向延长.3命题可以写为 “如果则”的形式, “如果”是命题的条件, “则”是命题的结论.4几何画图要画一般图形,以免给题目附加没有的条件,造成误解.5数射线、线段、角的个数时,应该按顺序数,或分类数.6几何论证题可以运用“分析综合法” 、 “方程分析法”、“代入分析法”、“图形观察法”四 种方法分析.7 方向角:(1) () HYPERLINK l _bookmar
15、k1 28比例尺:比例尺 1:m 中, 1 表示图上距离, m 表示实际距离,若图上 1 厘米,表示实际 距离 m 厘米.9几何题的证明要用 “论证法”,论证要求规范、 严密、 有依据; 证明的依据是学过的定义、 公理、定理和推论.一、填空题(每空 1 分,共 20 分):1 、 5 的平方根是_ ,32 的算术平方根是_,8 的立方根是_。2、化简:(1)(2) , (3) = _。3、如图 1 所示,图形经过_ 变化成图形,图形经过_ 变化成图形,图形经过_ 变化成图形。4、用两个一样三角尺(含 30角的那个),能拼出_种平行四边形。5、估算:(1) _ (误差小于 1). z.-6、已知
16、:四边形 ABCD 中, ABCD,要使四边形 ABCD 为平行四边形,需要 增加_ 。(只需填一个你认为正确的条件即可)7.一个多边形的内角和比外角和的3 倍多 1800,则它的边数是_.8, .*种大米的单价是 2.4 元/千克,当购买*千克大米时,花费为y 元,则*与y 的函数关系式是9.如图直线 L 一次函数 y=k*+b 的图象,则 b= ,k=10.若,则*= ;y= 。11.调查*车间在一天中加工零件的情况如下:有 2 人加工 18 个零件,有 1 人每人 加工 14 个零件,有 4 人每人加工 11 个零件,有 1 人加工 15 个零件.根据上述数据, 这组数据的平均数为_ ,
17、这组数据的众数为_, 中位数是_ 。二. 选择题(每小题 2 分,共 20 分):12如图 4 是我校的长方形水泥操场,如果一学生要从 A 角走到 C 角,至少走()A.140 米 B.120 米 C.100 米 D.90 米13、下列说法中,正确的有()无限小数都是无理数;无理数都是无理限小数;带根号的数都是无理数;2 是 4 的一个平方根。A. B. C. D. 14、如图 5,已知点 O 是正三角形 ABC 三条高的交点,. z.-现将AOB 绕点 O 至少要旋转几度后与BOC 重合。()A. 60 B. 120 C. 240 D. 36015、和数轴上的点成一一对应关系的数是()A.
18、自然数 B.有理数 C.无理数 D. 实数16、如图 6 所示,在 ABCD 中, E、F 分别 AB、CD 的中点,连结 DE、EF、BF, 则图中平行四边形共有()A2 个 B4 个 C6 个 D8 个17.点 M(-3,4)离原点的距离是( )单位长度.A. 3 B. 4 C. 5 D. 7.18有 10 个数据的平均数为 12,另有 20 个数据的平均数为 15,则所有这 30 个数据 的平均数是( )A.12 B.15 C.13.5 D.14三、化简(每小题 3 分,共 20 分):19 2021. 用作图象的方法解方程组:四、解答题(每题 5 分,共 30 分)22 经过平移,的边 AB 移到了 EF,作出平移后的三角形,你能给出几种作法.23. 如图,在ABCD 中, AC 与 BD 相交于点 O,ABAC,DAC45AC2,求 BD 的长。A DOB C. z.-24已知:如图,正方形 ABCD
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年文艺巡回演出演员经纪代理合同3篇
- 二零二五年度城市绿化景观规划设计分包合同4篇
- 二零二五年度知识产权保密许可协议3篇
- 2025年厂房装修改造及配套设备采购合同4篇
- 个人理财产品代理销售协议(2024版)3篇
- 二零二五版房地产股权托管与风险控制合同3篇
- 2025年合资投资合同书
- 2025版码头绿色物流配送体系与环保责任协议4篇
- 2025年农业产业仲裁协议范本
- 二零二五年度高校毕业生就业实习协议3篇
- 资本金管理制度文件模板
- 2025年生产主管年度工作计划
- 2025年急诊科护理工作计划
- 高中家长会 高二寒假线上家长会课件
- 违规行为与处罚管理制度
- 个人教师述职报告锦集10篇
- 四川省等八省2025年普通高中学业水平选择性考试适应性演练历史试题(含答案)
- 《内部培训师培训》课件
- 《雷达原理》课件-3.3.3教学课件:相控阵雷达
- 西方史学史课件3教学
- 2024年中国医药研发蓝皮书
评论
0/150
提交评论