2021-2022学年浙江省高中发展共同体高考数学倒计时模拟卷含解析_第1页
2021-2022学年浙江省高中发展共同体高考数学倒计时模拟卷含解析_第2页
2021-2022学年浙江省高中发展共同体高考数学倒计时模拟卷含解析_第3页
2021-2022学年浙江省高中发展共同体高考数学倒计时模拟卷含解析_第4页
2021-2022学年浙江省高中发展共同体高考数学倒计时模拟卷含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022高考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知函数,若函数有三个零点,则实数的取值范围是( )ABCD2已知随机变量服从正态分布,( )ABCD3不等式组表示的平面区域为,则( )A,B,C,D,4如图在一个的二面角的棱有两个点,线段分别在这个二面角的两个半平面内,且都垂直于棱,且,

2、则的长为( )A4BC2D5已知,则,不可能满足的关系是()ABCD6已知双曲线,过原点作一条倾斜角为直线分别交双曲线左、右两支P,Q两点,以线段PQ为直径的圆过右焦点F,则双曲线离心率为ABC2D7已知实数x,y满足约束条件,若的最大值为2,则实数k的值为( )A1BC2D8过点的直线与曲线交于两点,若,则直线的斜率为( )ABC或D或9中国的国旗和国徽上都有五角星,正五角星与黄金分割有着密切的联系,在如图所示的正五角星中,以、为顶点的多边形为正五边形,且,则( )ABCD10复数( )ABCD11已知符号函数sgnxf(x)是定义在R上的减函数,g(x)f(x)f(ax)(a1),则( )

3、Asgng(x)sgn xBsgng(x)sgnxCsgng(x)sgnf(x)Dsgng(x)sgnf(x)12已知平面向量,则实数x的值等于( )A6B1CD二、填空题:本题共4小题,每小题5分,共20分。13如图,机器人亮亮沿着单位网格,从地移动到地,每次只移动一个单位长度,则亮亮从移动到最近的走法共有_种14在平面直角坐标系中,若函数在处的切线与圆存在公共点,则实数的取值范围为_15已知抛物线的对称轴与准线的交点为,直线与交于,两点,若,则实数_16若函数,则_;_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知非零实数满足 (1)求证:; (2)是否

4、存在实数,使得恒成立?若存在,求出实数的取值范围; 若不存在,请说明理由18(12分)已知函数.若在定义域内存在,使得成立,则称为函数的局部对称点.(1)若a,且a0,证明:函数有局部对称点;(2)若函数在定义域内有局部对称点,求实数c的取值范围;(3)若函数在R上有局部对称点,求实数m的取值范围.19(12分)已知数列的前n项和,是等差数列,且.()求数列的通项公式;()令.求数列的前n项和.20(12分)在平面直角坐标系中,已知直线l的参数方程为(t为参数),在以坐标原点O为极点,x轴的正半轴为极轴,且与直角坐标系长度单位相同的极坐标系中,曲线C的极坐标方程是.(1)求直线l的普通方程与曲

5、线C的直角坐标方程;(2)若直线l与曲线C相交于两点A,B,求线段的长.21(12分)在平面直角坐标系中,直线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求直线的普通方程和曲线的直角坐标方程;(2)若直线与曲线交于、两点,求的面积.22(10分)已知直线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求直线的普通方程和曲线的直角坐标方程;(2)设点,直线与曲线交于,两点,求的值.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1B

6、【解析】根据所给函数解析式,画出函数图像.结合图像,分段讨论函数的零点情况:易知为的一个零点;对于当时,由代入解析式解方程可求得零点,结合即可求得的范围;对于当时,结合导函数,结合导数的几何意义即可判断的范围.综合后可得的范围.【详解】根据题意,画出函数图像如下图所示:函数的零点,即.由图像可知,所以是的一个零点,当时,若,则,即,所以,解得;当时,则,且若在时有一个零点,则,综上可得,故选:B.【点睛】本题考查了函数图像的画法,函数零点定义及应用,根据零点个数求参数的取值范围,导数的几何意义应用,属于中档题.2B【解析】利用正态分布密度曲线的对称性可得出,进而可得出结果.【详解】,所以,.故

7、选:B.【点睛】本题考查利用正态分布密度曲线的对称性求概率,属于基础题.3D【解析】根据题意,分析不等式组的几何意义,可得其表示的平面区域,设,分析的几何意义,可得的最小值,据此分析选项即可得答案.【详解】解:根据题意,不等式组其表示的平面区域如图所示,其中 ,设,则,的几何意义为直线在轴上的截距的2倍,由图可得:当过点时,直线在轴上的截距最大,即,当过点原点时,直线在轴上的截距最小,即,故AB错误;设,则的几何意义为点与点连线的斜率,由图可得最大可到无穷大,最小可到无穷小,故C错误,D正确;故选:D.【点睛】本题考查本题考查二元一次不等式的性质以及应用,关键是对目标函数几何意义的认识,属于基

8、础题.4A【解析】由,两边平方后展开整理,即可求得,则的长可求【详解】解:,故选:【点睛】本题考查了向量的多边形法则、数量积的运算性质、向量垂直与数量积的关系,考查了空间想象能力,考查了推理能力与计算能力,属于中档题5C【解析】根据即可得出,根据,即可判断出结果【详解】;,;,故正确;,故C错误;,故D正确故C【点睛】本题主要考查指数式和对数式的互化,对数的运算,以及基本不等式:和不等式的应用,属于中档题6B【解析】求得直线的方程,联立直线的方程和双曲线的方程,求得两点坐标的关系,根据列方程,化简后求得离心率.【详解】设,依题意直线的方程为,代入双曲线方程并化简得,故 ,设焦点坐标为,由于以为

9、直径的圆经过点,故,即,即,即,两边除以得,解得.故,故选B.【点睛】本小题主要考查直线和双曲线的交点,考查圆的直径有关的几何性质,考查运算求解能力,属于中档题.7B【解析】画出约束条件的可行域,利用目标函数的几何意义,求出最优解,转化求解即可.【详解】可行域如图中阴影部分所示,要使得z能取到最大值,则,当时,x在点B处取得最大值,即,得;当时,z在点C处取得最大值,即,得(舍去).故选:B.【点睛】本题考查由目标函数最值求解参数值,数形结合思想,分类讨论是解题的关键,属于中档题.8A【解析】利用切割线定理求得,利用勾股定理求得圆心到弦的距离,从而求得,结合,求得直线的倾斜角为,进而求得的斜率

10、.【详解】曲线为圆的上半部分,圆心为,半径为.设与曲线相切于点,则所以到弦的距离为,所以,由于,所以直线的倾斜角为,斜率为.故选:A【点睛】本小题主要考查直线和圆的位置关系,考查数形结合的数学思想方法,属于中档题.9A【解析】利用平面向量的概念、平面向量的加法、减法、数乘运算的几何意义,便可解决问题【详解】解:.故选:A【点睛】本题以正五角星为载体,考查平面向量的概念及运算法则等基础知识,考查运算求解能力,考查化归与转化思想,属于基础题10A【解析】试题分析:,故选A.【考点】复数运算【名师点睛】复数代数形式的四则运算的法则是进行复数运算的理论依据,加减运算类似于多项式的合并同类项,乘法法则类

11、似于多项式的乘法法则,除法运算则先将除式写成分式的形式,再将分母实数化.11A【解析】根据符号函数的解析式,结合f(x)的单调性分析即可得解.【详解】根据题意,g(x)f(x)f(ax),而f(x)是R上的减函数,当x0时,xax,则有f(x)f(ax),则g(x)f(x)f(ax)0,此时sgng ( x)1,当x0时,xax,则有f(x)f(ax),则g(x)f(x)f(ax)0,此时sgng ( x)0,当x0时,xax,则有f(x)f(ax),则g(x)f(x)f(ax)0,此时sgng ( x)1,综合有:sgng ( x)sgn(x);故选:A【点睛】此题考查函数新定义问题,涉及函

12、数单调性辨析,关键在于读懂定义,根据自变量的取值范围分类讨论.12A【解析】根据向量平行的坐标表示即可求解.【详解】,即,故选:A【点睛】本题主要考查了向量平行的坐标运算,属于容易题.二、填空题:本题共4小题,每小题5分,共20分。13【解析】分三步来考查,先从到,再从到,最后从到,分别计算出三个步骤中对应的走法种数,然后利用分步乘法计数原理可得出结果.【详解】分三步来考查:从到,则亮亮要移动两步,一步是向右移动一个单位,一步是向上移动一个单位,此时有种走法;从到,则亮亮要移动六步,其中三步是向右移动一个单位,三步是向上移动一个单位,此时有种走法;从到,由可知有种走法.由分步乘法计数原理可知,

13、共有种不同的走法.故答案为:.【点睛】本题考查格点问题的处理,考查分步乘法计数原理和组合计数原理的应用,属于中等题.14【解析】利用导数的几何意义可求得函数在处的切线,再根据切线与圆存在公共点,利用圆心到直线的距离满足的条件列式求解即可.【详解】解:由条件得到 又所以函数在处的切线为,即圆方程整理可得:即有圆心且所以圆心到直线的距离,即.解得或,故答案为:【点睛】本题主要考查了导数的几何意义求解切线方程的问题,同时也考查了根据直线与圆的位置关系求解参数范围的问题,属于基础题.15【解析】由于直线过抛物线的焦点,因此过,分别作的准线的垂线,垂足分别为,由抛物线的定义及平行线性质可得,从而再由抛物

14、线定义可求得直线倾斜角的余弦,再求得正切即为直线斜率注意对称性,问题应该有两解【详解】直线过抛物线的焦点,过,分别作的准线的垂线,垂足分别为,由抛物线的定义知,因为,所以因为,所以,从而设直线的倾斜角为,不妨设,如图,则,同理,则,解得,由对称性还有满足题意,综上,【点睛】本题考查抛物线的性质,考查抛物线的焦点弦问题,掌握抛物线的定义,把抛物线上点到焦点距离与它到距离联系起来是解题关键160 1 【解析】根据分段函数解析式,代入即可求解.【详解】函数,所以,.故答案为:0;1.【点睛】本题考查了分段函数求值的简单应用,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。1

15、7(1)见解析(2)存在,【解析】(1)利用作差法即可证出.(2)将不等式通分化简可得,讨论或,分离参数,利用基本不等式即可求解.【详解】又即即当时,即恒成立(当且仅当时取等号),故当时恒成立(当且仅当时取等号),故综上,【点睛】本题考查了作差法证明不等式、基本不等式求最值、考查了分类讨论的思想,属于基础题.18(1)见解析(2)(3)【解析】(1)若函数有局部对称点,则,即有解,即可求证;(2)由题可得在内有解,即方程在区间上有解,则,设,利用导函数求得的范围,即可求得的范围;(3)由题可得在上有解,即在上有解,设,则可变形为方程在区间内有解,进而求解即可.【详解】(1)证明:由得,代入得,

16、则得到关于x的方程,由于且,所以,所以函数必有局部对称点(2)解:由题,因为函数在定义域内有局部对称点所以在内有解,即方程在区间上有解,所以,设,则,所以令,则,当时,故函数在区间上单调递减,当时,故函数在区间上单调递增,所以,因为,所以,所以,所以(3)解:由题,由于,所以,所以(*)在R上有解,令,则,所以方程(*)变为在区间内有解,需满足条件:,即,得【点睛】本题考查函数的局部对称点的理解,利用导函数研究函数的最值问题,考查转化思想与运算能力.19();()【解析】试题分析:(1)先由公式求出数列的通项公式;进而列方程组求数列的首项与公差,得数列的通项公式;(2)由(1)可得,再利用“错

17、位相减法”求数列的前项和.试题解析:(1)由题意知当时,当时,所以设数列的公差为,由,即,可解得,所以(2)由(1)知,又,得,两式作差,得所以考点 1、待定系数法求等差数列的通项公式;2、利用“错位相减法”求数列的前项和.【易错点晴】本题主要考查待定系数法求等差数列的通项公式、利用“错位相减法”求数列的前项和,属于难题. “错位相减法”求数列的前项和是重点也是难点,利用“错位相减法”求数列的和应注意以下几点:掌握运用“错位相减法”求数列的和的条件(一个等差数列与一个等比数列的积);相减时注意最后一项 的符号;求和时注意项数别出错;最后结果一定不能忘记等式两边同时除以.20(1)l:,C:;(

18、2)【解析】(1)直接利用转换关系,把参数方程直角坐标方程和极坐标方程之间进行转换;(2)由(1)可得曲线是圆,求出圆心坐标及半径,再求得圆心到直线的距离,即可求得的长.【详解】(1)由题意可得直线:,由,得,即,所以曲线C:.(2)由(1)知,圆,半径.圆心到直线的距离为:.【点睛】本题考查直线的普通坐标方程、曲线的直角坐标方程的求法,考查弦长的求法、运算求解能力,是中档题21(1),;(2).【解析】(1)在直线的参数方程中消去参数可得出直线的普通方程,在曲线的极坐标方程两边同时乘以,结合可将曲线的极坐标方程化为直角坐标方程;(2)计算出直线截圆所得弦长,并计算出原点到直线的距离,利用三角形的面积公式可求得的面积.【详解】(1)由得,故直线的普通方程是.由,得,代入公式得,得,故曲线的直角坐标方程是;(2)因为曲线的圆心为,半径为,圆心到直线的距离为,则弦长.又到直线的距离为,所

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论