版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1若满足,且目标函数的最大值为2,则的最小值为( )A8B4CD62已知集合A,则集合( )ABCD3已知三棱锥的外接球半径为2,且球心为线段的中点,则三棱锥的体积的最大值为( )ABCD4已知平面向量,则实数x的值等于( )A6B1CD
2、5函数的最大值为,最小正周期为,则有序数对为( )ABCD6已知与分别为函数与函数的图象上一点,则线段的最小值为( )ABCD67如图所示,直三棱柱的高为4,底面边长分别是5,12,13,当球与上底面三条棱都相切时球心到下底面距离为8,则球的体积为 ( ) A16053B6423C9633D256238已知双曲线的一条渐近线经过圆的圆心,则双曲线的离心率为( )ABCD29设正项等差数列的前项和为,且满足,则的最小值为A8B16C24D3610已知函数,若对,且,使得,则实数的取值范围是( )ABCD11已知定义在上的奇函数满足,且当时,则( )A1B-1C2D-212二项式的展开式中,常数项
3、为( )AB80CD160二、填空题:本题共4小题,每小题5分,共20分。13正项等比数列|满足,且成等差数列,则取得最小值时的值为_14已知函数,则_;满足的的取值范围为_.15一次考试后,某班全班50个人数学成绩的平均分为正数,若把当成一个同学的分数,与原来的50个分数一起,算出这51个分数的平均值为,则_16连续2次抛掷一颗质地均匀的骰子(六个面上分别标有数字1,2,3,4,5,6的正方体),观察向上的点数,则事件“点数之积是3的倍数”的概率为_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)若函数为奇函数,且时有极小值.(1)求实数的值与实数的取值范围;(2
4、)若恒成立,求实数的取值范围.18(12分)自湖北武汉爆发新型冠状病毒惑染的肺炎疫情以来,武汉医护人员和医疗、生活物资严重缺乏,全国各地纷纷驰援.截至1月30日12时,湖北省累计接收捐赠物资615.43万件,包括医用防护服2.6万套N95口軍47.9万个,医用一次性口罩172.87万个,护目镜3.93万个等.中某运输队接到给武汉运送物资的任务,该运输队有8辆载重为6t的A型卡车,6辆载重为10t的B型卡车,10名驾驶员,要求此运输队每天至少运送720t物资.已知每辆卡车每天往返的次数:A型卡车16次,B型卡车12次;每辆卡车每天往返的成本:A型卡车240元,B型卡车378元.求每天派出A型卡车
5、与B型卡车各多少辆,运输队所花的成本最低?19(12分)如图所示,四棱锥PABCD中,PC底面ABCD,PCCD2,E为AB的中点,底面四边形ABCD满足ADCDCB90,AD1,BC1()求证:平面PDE平面PAC;()求直线PC与平面PDE所成角的正弦值;()求二面角DPEB的余弦值20(12分)如图,在四棱锥中,是边长为的正方形的中心,平面,为的中点.()求证:平面平面; ()若,求二面角的余弦值.21(12分)已知函数,.(1)讨论的单调性;(2)当时,证明:.22(10分)如图,在三棱柱中,是边长为2的菱形,且,是矩形,且平面平面,点在线段上移动(不与重合),是的中点.(1)当四面体
6、的外接球的表面积为时,证明:.平面(2)当四面体的体积最大时,求平面与平面所成锐二面角的余弦值.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1A【解析】作出可行域,由,可得.当直线过可行域内的点时,最大,可得.再由基本不等式可求的最小值.【详解】作出可行域,如图所示由,可得.平移直线,当直线过可行域内的点时,最大,即最大,最大值为2.解方程组,得.,当且仅当,即时,等号成立.的最小值为8.故选:.【点睛】本题考查简单的线性规划,考查基本不等式,属于中档题.2A【解析】化简集合,,按交集定义,即可求解.【详解】集合,则.故选:A.
7、【点睛】本题考查集合间的运算,属于基础题.3C【解析】由题可推断出和都是直角三角形,设球心为,要使三棱锥的体积最大,则需满足,结合几何关系和图形即可求解【详解】先画出图形,由球心到各点距离相等可得,故是直角三角形,设,则有,又,所以,当且仅当时,取最大值4,要使三棱锥体积最大,则需使高,此时,故选:C【点睛】本题考查由三棱锥外接球半径,半径与球心位置求解锥体体积最值问题,属于基础题4A【解析】根据向量平行的坐标表示即可求解.【详解】,即,故选:A【点睛】本题主要考查了向量平行的坐标运算,属于容易题.5B【解析】函数(为辅助角)函数的最大值为,最小正周期为故选B6C【解析】利用导数法和两直线平行
8、性质,将线段的最小值转化成切点到直线距离.【详解】已知与分别为函数与函数的图象上一点,可知抛物线存在某条切线与直线平行,则,设抛物线的切点为,则由可得,所以切点为,则切点到直线的距离为线段的最小值,则.故选:C.【点睛】本题考查导数的几何意义的应用,以及点到直线的距离公式的应用,考查转化思想和计算能力.7A【解析】设球心为O,三棱柱的上底面A1B1C1的内切圆的圆心为O1,该圆与边B1C1切于点M,根据球的几何性质可得OO1M为直角三角形,然后根据题中数据求出圆O1半径,进而求得球的半径,最后可求出球的体积【详解】如图,设三棱柱为ABC-A1B1C1,且AB=12,BC=5,AC=13,高AA
9、1=4所以底面A1B1C1为斜边是A1C1的直角三角形,设该三角形的内切圆为圆O1,圆O1与边B1C1切于点M,则圆O1的半径为O1M=12+5-132=2设球心为O,则由球的几何知识得OO1M为直角三角形,且OO1=8-4=4,所以OM=22+42=25,即球O的半径为25,所以球O的体积为43(25)3=16053故选A【点睛】本题考查与球有关的组合体的问题,解答本题的关键有两个:(1)构造以球半径R、球心到小圆圆心的距离d和小圆半径r为三边的直角三角形,并在此三角形内求出球的半径,这是解决与球有关的问题时常用的方法(2)若直角三角形的两直角边为a,b,斜边为c,则该直角三角形内切圆的半径
10、r=a+b-c2,合理利用中间结论可提高解题的效率8B【解析】求出圆心,代入渐近线方程,找到的关系,即可求解.【详解】解:,一条渐近线,故选:B【点睛】利用的关系求双曲线的离心率,是基础题.9B【解析】方法一:由题意得,根据等差数列的性质,得成等差数列,设,则,则,当且仅当时等号成立,从而的最小值为16,故选B方法二:设正项等差数列的公差为d,由等差数列的前项和公式及,化简可得,即,则,当且仅当,即时等号成立,从而的最小值为16,故选B10D【解析】先求出的值域,再利用导数讨论函数在区间上的单调性,结合函数值域,由方程有两个根求参数范围即可.【详解】因为,故,当时,故在区间上单调递减;当时,故
11、在区间上单调递增;当时,令,解得,故在区间单调递减,在区间上单调递增.又,且当趋近于零时,趋近于正无穷;对函数,当时,;根据题意,对,且,使得成立,只需,即可得,解得.故选:D.【点睛】本题考查利用导数研究由方程根的个数求参数范围的问题,涉及利用导数研究函数单调性以及函数值域的问题,属综合困难题.11B【解析】根据f(x)是R上的奇函数,并且f(x+1)=f(1-x),便可推出f(x+4)=f(x),即f(x)的周期为4,而由x0,1时,f(x)=2x-m及f(x)是奇函数,即可得出f(0)=1-m=0,从而求得m=1,这样便可得出f(2019)=f(-1)=-f(1)=-1【详解】是定义在R
12、上的奇函数,且;的周期为4;时,;由奇函数性质可得;时,;.故选:B.【点睛】本题考查利用函数的奇偶性和周期性求值,此类问题一般根据条件先推导出周期,利用函数的周期变换来求解,考查理解能力和计算能力,属于中等题.12A【解析】求出二项式的展开式的通式,再令的次数为零,可得结果.【详解】解:二项式展开式的通式为,令,解得,则常数项为.故选:A.【点睛】本题考查二项式定理指定项的求解,关键是熟练应用二项展开式的通式,是基础题.二、填空题:本题共4小题,每小题5分,共20分。132【解析】先由题意列出关于的方程,求得的通项公式,再表示出即可求解.【详解】解:设公比为,且,时,上式有最小值,故答案为:
13、2.【点睛】本题考查等比数列、等差数列的有关性质以及等比数列求积、求最值的有关运算,中档题.14 【解析】首先由分段函数的解析式代入求值即可得到,分和两种情况讨论可得;【详解】解:因为,所以,当时,满足题意,;当时,由,解得.综合可知:满足的的取值范围为.故答案为:;.【点睛】本题考查分段函数的性质的应用,分类讨论思想,属于基础题.151【解析】根据均值的定义计算【详解】由题意,故答案为:1【点睛】本题考查均值的概念,属于基础题16【解析】总事件数为,目标事件:当第一颗骰子为1,2,4,6,具体事件有,共8种;当第一颗骰子为3,6,则第二颗骰子随便都可以,则有种;所以目标事件共20中,所以。三
14、、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(1), ;(2)【解析】(1)由奇函数可知 在定义域上恒成立,由此建立方程,即可求出实数的值;对函数进行求导,通过导数求出,若,则恒成立不符合题意,当,可证明,此时时有极小值.(2)可知,进而得到,令,通过导数可知在上为单调减函数,由可得,从而可求实数的取值范围.【详解】(1)由函数为奇函数,得在定义域上恒成立,所以,化简可得,所以.则,令,则.故当时,;当时,故在上递减,在上递增,若,则恒成立,单调递增,无极值点;所以,解得,取,则又函数的图象在区间上连续不间断,故由函数零点存在性定理知在区间上,存在为函数的零点,为极小值,所
15、以,的取值范围是.(2)由满足,代入,消去可得.构造函数,所以,当时,即恒成立,故在上为单调减函数,其中.则可转化为,故,由,设,可得当时,则在上递增,故.综上,的取值范围是.【点睛】本题考查了利用导数研究函数的单调性,考查了利用导数求函数的最值,考查了奇函数的定义,考查了转化的思想.对于 恒成立的问题,常转化为求 的最小值,使;对于 恒成立的问题,常转化为求 的最大值,使.18每天派出A型卡车辆,派出B型卡车辆,运输队所花成本最低【解析】设每天派出A型卡车辆,则派出B型卡车辆,由题意列出约束条件,作出可行域,求出使目标函数取最小值的整数解,即可得解.【详解】设每天派出A型卡车辆,则派出B型卡
16、车辆,运输队所花成本为元,由题意可知,整理得,目标函数,如图所示,为不等式组表示的可行域,由图可知,当直线经过点时,最小,解方程组,解得,然而,故点不是最优解.因此在可行域的整点中,点使得取最小值,即,故每天派出A型卡车辆,派出B型卡车辆,运输队所花成本最低.【点睛】本题考查了线性规划问题中的最优整数解问题,考查了数形结合的思想,解题关键在于列出不等式组(方程组)寻求约束条件,并就题目所述找出目标函数,同时注意整点的选取,属于中档题.19()证明见解析()()【解析】()由题知,如图以点为原点,直线分别为轴,建立空间直角坐标系,计算,证明,从而平面PAC,即可得证;()求解平面PDE的一个法向
17、量,计算,即可得直线PC与平面PDE所成角的正弦值;()求解平面PBE的一个法向量,计算,即可得二面角DPEB的余弦值【详解】()PC底面ABCD, 如图以点为原点,直线分别为轴,建立空间直角坐标系,则,又,平面PAC,平面PDE,平面PDE平面PAC;()设为平面PDE的一个法向量,又,则,取,得,直线PC与平面PDE所成角的正弦值;()设为平面PBE的一个法向量,又则,取,得,二面角DPEB的余弦值.【点睛】本题主要考查了平面与平面的垂直,直线与平面所成角的计算,二面角大小的求解,考查了空间向量在立体几何中的应用,考查了学生的空间想象能力与运算求解能力.20()详见解析;().【解析】()
18、由正方形的性质得出,由平面得出,进而可推导出平面,再利用面面垂直的判定定理可证得结论;()取的中点,连接、,以、所在直线分别为、轴建立空间直角坐标系,利用空间向量法能求出二面角的余弦值.【详解】()是正方形,平面,平面,、平面,且,平面 ,又平面,平面平面;()取的中点,连接、,是正方形,易知、两两垂直,以点为坐标原点,以、所在直线分别为、轴建立如图所示的空间直角坐标系,在中,、,设平面的一个法向量,由,得,令,则,.设平面的一个法向量,由,得,取,得,得.,二面角为钝二面角,二面角的余弦值为.【点睛】本题考查面面垂直的证明,同时也考查了利用空间向量法求解二面角,考查推理能力与计算能力,属于中等题.21(1)见解析;(2)见解析【解析】(1)求导得,分类讨论和,利用导数研究含参数的函数单调性;(2)根据(1)中求得的的单调性,得出在处取得最大值为,构造函数,利用导数,推出,即
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 高考物理总复习专题八恒定电流实验九测定电源的电动势和内阻练习含答案
- 草莓购买合同
- 江苏地区高一年级信息技术一年教案7资源管理器教案
- 江苏地区高一年级信息技术一年教案26 IF语句教案
- 2024年高中政治 第一单元 公民的政治生活 第二课 我国公民的政治参与 3 民主管理:共创幸福生活教案1 新人教版必修2
- 2024-2025学年新教材高中物理 第七章 万有引力与宇宙航行 4 宇宙航行(1)教案 新人教版必修2
- 2024-2025学年新教材高中地理 第3章 天气的成因与气候的形成 第2节 气压带、风带对气候的影响教案 中图版选择性必修第一册
- 高考地理一轮复习第十二章环境与发展第二节中国国家发展战略课件
- 宝宝防疫针委托书
- 人教A版广东省深圳实验学校高中部2023-2024学年高一上学期第三阶段考试数学试题
- 北京科技大学EMC-VNX5300实施文档
- 高一女生青春期教育讲座
- 氨分解制氢安全技术要求3
- 智慧农业导论智慧树知到答案章节测试2023年浙江农林大学
- 知识产权保险介绍
- 2023年重庆市大渡口区春晖路街道阳光社区工作人员考试模拟试题及答案
- 日本福岛核电站事故案例环境伦理分析
- 孔子与《论语》智慧树知到答案章节测试2023年曲阜师范大学
- 汽车维修结算单
- GA 1811.1-2022传媒设施反恐怖防范要求第1部分:媒体机构
- 医学原虫的检验 蓝氏贾第鞭毛虫的检验
评论
0/150
提交评论