2021-2022学年新乡市重点高三二诊模拟考试数学试卷含解析_第1页
2021-2022学年新乡市重点高三二诊模拟考试数学试卷含解析_第2页
2021-2022学年新乡市重点高三二诊模拟考试数学试卷含解析_第3页
2021-2022学年新乡市重点高三二诊模拟考试数学试卷含解析_第4页
2021-2022学年新乡市重点高三二诊模拟考试数学试卷含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022高考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知数列为等差数列,为其前项和,则( )A7B14C28D842从某市的中学生中随机调查了部分男生,获得了他们的身高数据,整理得到如下频率分布直方图:根据频率分布直方图,可知这部分男

2、生的身高的中位数的估计值为ABCD3是恒成立的( )A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件4若为虚数单位,网格纸上小正方形的边长为1,图中复平面内点表示复数,则表示复数的点是( )AEBFCGDH5把函数的图象向右平移个单位,得到函数的图象给出下列四个命题的值域为的一个对称轴是的一个对称中心是存在两条互相垂直的切线其中正确的命题个数是( )A1B2C3D46在平面直角坐标系xOy中,已知椭圆的右焦点为,若F到直线的距离为,则E的离心率为( )ABCD7函数在上单调递减的充要条件是( )ABCD8已知全集U=x|x24,xZ,A=1,2,则CUA=( )A-1B-1,0

3、C-2,-1,0D-2,-1,0,1,29如图,抛物线:的焦点为,过点的直线与抛物线交于,两点,若直线与以为圆心,线段(为坐标原点)长为半径的圆交于,两点,则关于值的说法正确的是( )A等于4B大于4C小于4D不确定10已知,为两条不同直线,为三个不同平面,下列命题:若,则;若,则;若,则;若,则.其中正确命题序号为( )ABCD11函数满足对任意都有成立,且函数的图象关于点对称,则的值为( )A0B2C4D112如图,圆的半径为,是圆上的定点,是圆上的动点, 点关于直线的对称点为,角的始边为射线,终边为射线,将表示为的函数,则在上的图像大致为( )ABCD二、填空题:本题共4小题,每小题5分

4、,共20分。13根据如图所示的伪代码,输出的值为_.14已知等差数列的各项均为正数,且,若,则_.15已知双曲线:(,),直线:与双曲线的两条渐近线分别交于,两点.若(点为坐标原点)的面积为32,且双曲线的焦距为,则双曲线的离心率为_.16过动点作圆:的切线,其中为切点,若(为坐标原点),则的最小值是_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)如图,四棱锥中,平面,.()证明:;()若是中点,与平面所成的角的正弦值为,求的长.18(12分)已知xR,设,记函数.(1)求函数取最小值时x的取值范围;(2)设ABC的角A,B,C所对的边分别为a,b,c,若,求AB

5、C的面积S的最大值.19(12分)等比数列中,()求的通项公式;()记为的前项和若,求20(12分)已知,函数的最小值为1(1)证明:(2)若恒成立,求实数的最大值21(12分)已知,求证:(1);(2).22(10分)底面为菱形的直四棱柱,被一平面截取后得到如图所示的几何体.若,.(1)求证:;(2)求二面角的正弦值.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1D【解析】利用等差数列的通项公式,可求解得到,利用求和公式和等差中项的性质,即得解【详解】,解得故选:D【点睛】本题考查了等差数列的通项公式、求和公式和等差中项,考查

6、了学生综合分析,转化划归,数学运算的能力,属于中档题.2C【解析】由题可得,解得,则,所以这部分男生的身高的中位数的估计值为,故选C3A【解析】设 成立;反之,满足 ,但,故选A.4C【解析】由于在复平面内点的坐标为,所以,然后将代入化简后可找到其对应的点.【详解】由,所以,对应点.故选:C【点睛】此题考查的是复数与复平面内点的对就关系,复数的运算,属于基础题.5C【解析】由图象变换的原则可得,由可求得值域;利用代入检验法判断;对求导,并得到导函数的值域,即可判断.【详解】由题,则向右平移个单位可得, ,的值域为,错误;当时,所以是函数的一条对称轴,正确;当时,所以的一个对称中心是,正确;,则

7、,使得,则在和处的切线互相垂直,正确.即正确,共3个.故选:C【点睛】本题考查三角函数的图像变换,考查代入检验法判断余弦型函数的对称轴和对称中心,考查导函数的几何意义的应用.6A【解析】由已知可得到直线的倾斜角为,有,再利用即可解决.【详解】由F到直线的距离为,得直线的倾斜角为,所以,即,解得.故选:A.【点睛】本题考查椭圆离心率的问题,一般求椭圆离心率的问题时,通常是构造关于的方程或不等式,本题是一道容易题.7C【解析】先求导函数,函数在上单调递减则恒成立,对导函数不等式换元成二次函数,结合二次函数的性质和图象,列不等式组求解可得.【详解】依题意,令,则,故在上恒成立;结合图象可知,解得故.

8、故选:C.【点睛】本题考查求三角函数单调区间. 求三角函数单调区间的两种方法:(1)代换法:就是将比较复杂的三角函数含自变量的代数式整体当作一个角(或),利用基本三角函数的单调性列不等式求解;(2)图象法:画出三角函数的正、余弦曲线,结合图象求它的单调区间.8C【解析】先求出集合U,再根据补集的定义求出结果即可【详解】由题意得U=x|x24,xZ=x|-2x2,xZ=-2,-1,0,1,2,A=1,2,CUA=-2,-1,0故选C【点睛】本题考查集合补集的运算,求解的关键是正确求出集合U和熟悉补集的定义,属于简单题9A【解析】利用的坐标为,设直线的方程为,然后联立方程得,最后利用韦达定理求解即

9、可【详解】据题意,得点的坐标为.设直线的方程为,点,的坐标分别为,.讨论:当时,;当时,据,得,所以,所以.【点睛】本题考查直线与抛物线的相交问题,解题核心在于联立直线与抛物线的方程,属于基础题10C【解析】根据直线与平面,平面与平面的位置关系进行判断即可.【详解】根据面面平行的性质以及判定定理可得,若,则,故正确;若,平面可能相交,故错误;若,则可能平行,故错误;由线面垂直的性质可得,正确;故选:C【点睛】本题主要考查了判断直线与平面,平面与平面的位置关系,属于中档题.11C【解析】根据函数的图象关于点对称可得为奇函数,结合可得是周期为4的周期函数,利用及可得所求的值.【详解】因为函数的图象

10、关于点对称,所以的图象关于原点对称,所以为上的奇函数.由可得,故,故是周期为4的周期函数.因为,所以.因为,故,所以.故选:C.【点睛】本题考查函数的奇偶性和周期性,一般地,如果上的函数满足,那么是周期为的周期函数,本题属于中档题.12B【解析】根据图象分析变化过程中在关键位置及部分区域,即可排除错误选项,得到函数图象,即可求解.【详解】由题意,当时,P与A重合,则与B重合,所以,故排除C,D选项;当时,由图象可知选B.故选:B【点睛】本题主要考查三角函数的图像与性质,正确表示函数的表达式是解题的关键,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。137【解析】表示初值S=1,i

11、=1,分三次循环计算得S=100,输出i=7.【详解】S=1,i=1第一次循环:S=1+1=2,i=1+2=3;第二次循环:S=2+3=5,i=3+2=5;第三次循环:S=5+5=10,i=5+2=7;S=109,循环结束,输出:i=7.故答案为:7【点睛】本题考查在程序语句的背景下已知输入的循环结构求输出值问题,属于基础题.14【解析】设等差数列的公差为,根据,且,可得,解得,进而得出结论.【详解】设公差为,因为,所以,所以,所以 故答案为:【点睛】本题主要考查了等差数列的通项公式、需熟记公式,属于基础题.15或【解析】用表示出的面积,求得等量关系,联立焦距的大小,以及,即可容易求得,则离心

12、率得解.【详解】联立解得.所以的面积,所以.而由双曲线的焦距为知,所以.联立解得或故双曲线的离心率为或.故答案为:或.【点睛】本题考查双曲线的方程与性质,考查运算求解能力以及函数与方程思想,属中档题.16【解析】解答:由圆的方程可得圆心C的坐标为(2,2),半径等于1.由M(a,b),则|MN|2=(a2)2+(b2)212=a2+b24a4b+7,|MO|2=a2+b2.由|MN|=|MO|,得a2+b24a4b+7=a2+b2.整理得:4a+4b7=0.a,b满足的关系为:4a+4b7=0.求|MN|的最小值,就是求|MO|的最小值在直线4a+4b7=0上取一点到原点距离最小,由“垂线段最

13、短”得,直线OM垂直直线4a+4b7=0,由点到直线的距离公式得:MN的最小值为: .三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17()见解析;()【解析】()取的中点,连接,由,得三点共线,且,又,再利用线面垂直的判定定理证明.()设,则,在底面中,在中,由余弦定理得:,在中,由余弦定理得,两式相加求得,再过作,则平面,即点到平面的距离,由是中点,得到到平面的距离,然后根据与平面所成的角的正弦值为求解.【详解】()取的中点,连接,由,得三点共线,且,又,所以平面,所以.()设,在底面中,在中,由余弦定理得:,在中,由余弦定理得,两式相加得:,所以 ,过作,则平面,即点到平

14、面的距离,因为是中点,所以为到平面的距离,因为与平面所成的角的正弦值为,即,解得.【点睛】本题主要考查线面垂直的判定定理,线面角的应用,还考查了转化化归的思想和空间想象运算求解的能力,属于中档题.18(1);(2)【解析】(1)先根据向量的数量积的运算,以及二倍角公式和两角和的正弦公式化简得到f(x)=,再根据正弦函数的性质即可求出答案;(2)先求出C的大小,再根据余弦定理和基本不等式,即可求出,根据三角形的面积公式即可求出答案.【详解】(1). 令,kZ,即时,取最小值, 所以,所求的取值集合是;(2)由,得,因为,所以,所以,. 在中,由余弦定理,得,即,当且仅当时取等号,所以的面积,因此

15、的面积的最大值为.【点睛】本题考查了向量的数量积的运算和二倍角公式,两角和的正弦公式,余弦定理和基本不等式,三角形的面积公式,属于中档题.19 ()或()12【解析】(1)先设数列的公比为,根据题中条件求出公比,即可得出通项公式;(2)根据(1)的结果,由等比数列的求和公式,即可求出结果.【详解】(1)设数列的公比为,或.(2)时,解得;时,无正整数解;综上所述.【点睛】本题主要考查等比数列,熟记等比数列的通项公式与求和公式即可,属于基础题型.20(1)2;(2)【解析】分析:(1)将转化为分段函数,求函数的最小值(2)分离参数,利用基本不等式证明即可详解:()证明:,显然在上单调递减,在上单

16、调递增,所以的最小值为,即()因为恒成立,所以恒成立,当且仅当时,取得最小值,所以,即实数的最大值为点睛:本题主要考查含两个绝对值的函数的最值和不等式的应用,第二问恒成立问题分离参数,利用基本不等式求解很关键,属于中档题21(1)见解析;(2)见解析【解析】(1)结合基本不等式可证明;(2)利用基本不等式得,即,同理得其他两个式子,三式相加可证结论【详解】(1),当且仅当a=b=c等号成立,;(2)由基本不等式,同理,当且仅当a=b=c等号成立【点睛】本题考查不等式的证明,考查用基本不等式证明不等式成立解题关键是发现基本不等式的形式,方法是综合法22(1)见解析;(2)【解析】(1)先由线面垂直的判定定理证明平面,再证明线线垂直即可;(2)建立空间直角坐标系,求平面的一个法向量与平面的一个法向量,再利用向量数量积运算即可.【详

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论