




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第三章屈服条件第3章 屈服条件3.1 基本假设 3.2 回顾并思考弹性变形屈服均匀塑性变形塑性失稳断裂应力增加到什么程度材料屈服?3.1 基本假设材料为均匀连续,且各向同性;体积变化为弹性的,塑性变形时体积不变;静水压力不影响塑性变形,只引起体积弹性变化;不考虑时间因素,认为变形为准静态;不考虑包辛格(Banschinger)效应。基本概念:屈服应力:质点处于单向应力状态,只要单向应力达到材料的屈服点,则该点由弹性变形状态进入塑性变形状态临界的应力。塑性条件 或屈服条件:多向应力状态下变形体某点进入塑性状态并使塑性变形继续进行所必须满足的力学条件。与材料性质有关的常数 应力分量的函数有关材料性
2、质的一些基本概念d)弹塑性硬化实际金属材料有物理屈服点无明显物理屈服点b)理想弹塑性c)理想刚塑性材料e)刚塑性硬化1、屈雷斯加准则 法国工程师屈雷斯加(H.Tresca)提出材料的屈服与最大切应力有关,即当受力材料中的最大切应力达到某一极限值(定值)时,材料发生屈服。当3.2 屈服准则三个主剪力 单向拉伸时,有可用最简单的应力状态,如单向拉伸或纯剪(薄壁管扭转)试验求C。则: C=屈雷斯加屈服准则: 2、密席斯准则 因为材料的塑性变形是由应力偏张量引起的,且只与应力偏张量的第二不变量有关。 将应力偏张量和第二不变量作为屈服准则的判据。表述1 当应力偏张量的第二不变量达到某一定值时,该点进入塑
3、性变形状态。表述2 当点应力状态的等效应力达到某一与应力状态无关的定值,材料就屈服。 单向拉伸时,有 物理意义:1 当材料质点内单位体积的弹性形变能(即形状变化的能量)达到某临界时,材料形状就屈服。 2 当八面体剪应力为某一临界值时,材料形状就屈服了。对于绝大多数金属材料,密席斯准则更接近于试验数据。对于各向同性理想塑性材料共同特点:1).等式左边都是不变量的函数。2).拉应力和压应力的作用是一样的。3).各表达式都和应力球张量无关。一、两向应力状态的屈服轨迹即可得到两向应力状态的密席斯屈服准则: 坐标平面上是一个椭圆,它的中心在原点,对称轴与坐标轴,短半轴为,与坐标轴的截距成45,长半轴为这
4、个椭圆就叫 平面上的屈服轨迹。3.3 屈服准则的几何表达-屈服轨迹和屈服表面代入屈雷斯加屈服准则:这是一个六边形,内接于密席斯椭圆,在六个角点上,两个准则是一致的。椭圆在外,意味着按密席斯准则需要较大的应力才能使材料屈服。在这六点上,两个准则的差别都是15.5%。同样以如果P点在屈服轨迹的里面,则材料的质点处于弹性状态;如P点在轨迹上,则质点处于塑性状态;对于理想塑性材料,P点不可能在屈服轨迹的外面。密席斯屈服准则屈雷斯加屈服准则屈服表面几何意义:主应力空间中一点应力状态矢量的端点P点位于屈服表面上,该点处于塑性状态,若P点位于屈服表面内,则该点处于弹性性状态。主应力空间中,屈雷斯加屈服表面是
5、一个内接于米塞斯圆柱面的正六棱柱面屈服准则都是空间曲面,叫做屈服表面。平面:在主应力空间中,通过坐标原点并垂直于等倾角直线ON的平面。平面上的屈服轨迹3.4 中间主应力的影响设123 则:屈雷斯加准则可写成: 这时,中间主应力 不影响材料的屈服,但在密席斯准则中是有影响的。罗氏应力参数 当在至之间变化时,将在-11之间变化将密席斯准则改写成接近于屈雷斯加准则我们利用的形式: 若设值的变化范围为11.155两个屈服准则的数学表达式相同 两个屈服准则差别最大 平面应变(纯剪叠加球张量),两个准则相差最大,为15.5%。 (K表示屈服时的最大剪应力)屈雷斯加屈服准则: 密席斯屈服准则:3.5 平面问
6、题和轴对称问题中屈服准则的简化对于密席斯屈服准则: 平面应力时,平面变形时:轴对称问题:3.6 屈服准则的实验验证以上两种屈服条件最主要的差别在于中间主应力是否有影响。以下介绍的一个实验结果表明Von Mises条件比Tresca条件更接近于实际。平面应力状态 :承受均匀的拉应力及剪应力。求主应力(应力特征方程) 代入屈雷斯加准则: 代入密席斯准则:3.6 应变硬化材料的屈服准则 理想刚塑性。屈服准则材料经塑性变形后,要产生应变硬化,因此屈服应力并非常数,在变形过程的每一瞬间,都有一后继的瞬时屈服表面和屈服轨迹。而米赛斯和屈雷斯加两个屈服准则只适用于各向同性理想刚塑性材料,即屈服应力常数的情况
7、。对于各向同性硬化屈服准则,Y是随变形而变的变量:各向同性应变硬化材料的后继屈服轨迹思考什么是屈服准则、屈服表面、屈服轨迹?常用的屈服准则有哪两种?它们有何差别?在什么情况下它们相同?在什么应力状态下它们差别最大?分别写出其数学表达式。对各向同性的硬化材料的屈服准则是如何考虑的?米塞斯屈服准则的物理意义?例题讲解 例1 一直径为50mm的圆柱体试样,在无摩擦的光滑平板间墩粗,当总压力到达628KN时,试样屈服,现设在圆柱体周围方向上加10MPa的压力,试求试样屈服时所需的总压力。解:材料屈服应力:圆柱体加压后:由Mise屈服准则得:例2 已知一点的应力状态为:试用屈雷斯加屈服准则该判断应力是否
8、存在?如果存在,材料处于弹性还是塑性变形状态(材料为理想塑性材料,屈服强度为s)解:由屈雷斯加屈服准则 1=1.2s,2=0.1s,3=01-3=1.2s-0s,因是理想塑性材料,屈服强度为s,故此应力不存在。3. 若变形体屈服时的应力状态为: 试分别按Mises和Tresca塑性条件计算该材料的屈服应力及值,并分析差异大小。10MPa4、某理想塑性材料,其屈服应力为100N/mm2 ,某点的应力状态为 = 求其主应力,并判断该点处于什么状态(弹性/塑性)。(应力单位 N/mm2) 。 提示:3-152+60-54=0可分解为:(-9)(2-6+6)=0)。4 2 32 6 13 1 55某理
9、想塑性材料在平面应力状态下的各应力分量为x=75,y=15,z=0,xy=15(应力单位为MPa),若该应力状态足以产生屈服,试问该材料的屈服应力是多少?解:由由密席斯屈服准则:6试证明密席斯屈服准则可用主应力偏量表达为:证明:由密席斯屈服准则:(1)(2)所以:(1)式与(2)式相等。7试分别用密席斯和屈雷斯加屈服准则判断下列应力状态是否存在?如存在,应力处于弹性还是塑性状态?(材料为理想塑性材料)解:a)由屈雷斯加屈服准则:1-3=s得:s-0=s,存在。应力处于塑性状态。a)b)c)由密席斯屈服准则存在。应力处于塑性状态。8、p2rtzp一两端封闭的薄壁圆筒,半径为r ,壁厚为t,受内压力p的作用,试求此圆筒整个厚度产屈服时的内压力p。(设材料单向拉伸时的屈服应力为 )解:先求各应力分量(在内表面)(在外表面)-外表
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 共同股权投资合同范本
- 关于续签监控合同范本
- 凉皮店用工合同范例
- 事业单位劳务合同范本3篇
- 公司考核合同范本
- 下班无偿保洁合同范本
- 入股销售合同范本
- 北京贷款合同范本
- 农业设备运输合同范例
- 公司签承揽合同范本
- 《养老保险的理念》课件
- LY/T 3400-2024荒漠与荒漠化防治术语
- 2024-2025学年第二学期英语教研组工作计划
- 2025年往年教师职称考试试题
- 山东省海洋知识竞赛(初中组)考试题库500题(含答案)
- 服务行业人力资源薪酬体系管理与优化
- 《蔚来发展》课件
- 幼儿园开学前的厨房人员培训
- 《幼儿教育政策与法规》教案-单元6 幼儿园的工作人员
- 虚拟制片技术在VRAR应用中的角色建模与渲染-洞察分析
- 2024年山东商务职业学院高职单招语文历年参考题库含答案解析
评论
0/150
提交评论