




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、高级人工智能第十章 史忠植 中国科学院计算技术研究所强化学习1向阳书屋p内容提要引言强化学习模型动态规划蒙特卡罗方法时序差分学习Q学习强化学习中的函数估计应用2向阳书屋p引言 人类通常从与外界环境的交互中学习。所谓强化(reinforcement)学习是指从环境状态到行为映射的学习,以使系统行为从环境中获得的累积奖励值最大。 在强化学习中,我们设计算法来把外界环境转化为最大化奖励量的方式的动作。我们并没有直接告诉主体要做什么或者要采取哪个动作,而是主体通过看哪个动作得到了最多的奖励来自己发现。主体的动作的影响不只是立即得到的奖励,而且还影响接下来的动作和最终的奖励。试错搜索(trial-and
2、-error search)和延期强化(delayed reinforcement)这两个特性是强化学习中两个最重要的特性。 3向阳书屋p引言 强化学习技术是从控制理论、统计学、心理学等相关学科发展而来,最早可以追溯到巴甫洛夫的条件反射实验。 但直到上世纪八十年代末、九十年代初强化学习技术才在人工智能、机器学习和自动控制等领域中得到广泛研究和应用,并被认为是设计智能系统的核心技术之一。特别是随着强化学习的数学基础研究取得突破性进展后,对强化学习的研究和应用日益开展起来,成为目前机器学习领域的研究热点之一。4向阳书屋p引言强化思想最先来源于心理学的研究。1911年Thorndike提出了效果律(
3、Law of Effect):一定情景下让动物感到舒服的行为,就会与此情景增强联系(强化),当此情景再现时,动物的这种行为也更易再现;相反,让动物感觉不舒服的行为,会减弱与情景的联系,此情景再现时,此行为将很难再现。换个说法,哪种行为会“记住”,会与刺激建立联系,取决于行为产生的效果。动物的试错学习,包含两个含义:选择(selectional)和联系(associative),对应计算上的搜索和记忆。所以,1954年,Minsky在他的博士论文中实现了计算上的试错学习。同年,Farley和Clark也在计算上对它进行了研究。强化学习一词最早出现于科技文献是1961年Minsky 的论文“Ste
4、ps Toward Artificial Intelligence”,此后开始广泛使用。1969年, Minsky因在人工智能方面的贡献而获得计算机图灵奖。5向阳书屋p引言1953到1957年,Bellman提出了求解最优控制问题的一个有效方法:动态规划(dynamic programming) Bellman于 1957年还提出了最优控制问题的随机离散版本,就是著名的马尔可夫决策过程(MDP, Markov decision processe),1960年Howard提出马尔可夫决策过程的策略迭代方法,这些都成为现代强化学习的理论基础。1972年,Klopf把试错学习和时序差分结合在一起。1
5、978年开始,Sutton、Barto、 Moore,包括Klopf等对这两者结合开始进行深入研究。 1989年Watkins提出了Q-学习Watkins 1989,也把强化学习的三条主线扭在了一起。1992年,Tesauro用强化学习成功了应用到西洋双陆棋(backgammon)中,称为TD-Gammon 。6向阳书屋p内容提要引言强化学习模型动态规划蒙特卡罗方法时序差分学习Q学习强化学习中的函数估计应用7向阳书屋p主体强化学习模型i: inputr: reward s: statea: action状态 sisi+1ri+1奖励 ri环境动作 aia0a1a2s0s1s2s38向阳书屋p描
6、述一个环境(问题)Accessible vs. inaccessibleDeterministic vs. non-deterministicEpisodic vs. non-episodicStatic vs. dynamicDiscrete vs. continuousThe most complex general class of environments are inaccessible, non-deterministic, non-episodic, dynamic, and continuous.9向阳书屋p强化学习问题Agent-environment interaction
7、States, Actions, RewardsTo define a finite MDPstate and action sets : S and Aone-step “dynamics” defined by transition probabilities (Markov Property):reward probabilities:EnvironmentactionstaterewardRLAgent10向阳书屋p与监督学习对比Reinforcement Learning Learn from interactionlearn from its own experience, and
8、 the objective is to get as much reward as possible. The learner is not told which actions to take, but instead must discover which actions yield the most reward by trying them.RLSystemInputsOutputs (“actions”)Training Info = evaluations (“rewards” / “penalties”)Supervised Learning Learn from exampl
9、es provided by a knowledgable external supervisor.11向阳书屋p强化学习要素Policy: stochastic rule for selecting actionsReturn/Reward: the function of future rewards agent tries to maximizeValue: what is good because it predicts rewardModel: what follows whatPolicyRewardValueModel ofenvironmentIs unknownIs my g
10、oalIs I can getIs my method12向阳书屋p在策略下的Bellman公式The basic idea: So: Or, without the expectation operator: is the discount rate13向阳书屋pBellman最优策略公式其中:V*:状态值映射S: 环境状态R: 奖励函数P: 状态转移概率函数: 折扣因子14向阳书屋p马尔可夫决策过程 MARKOV DECISION PROCESS 由四元组定义。 环境状态集S 系统行为集合A 奖励函数R:SA 状态转移函数P:SAPD(S) 记R(s,a,s)为系统在状态s采用a动作使环境
11、状态转移到s获得的瞬时奖励值;记P(s,a,s)为系统在状态s采用a动作使环境状态转移到s的概率。15向阳书屋p马尔可夫决策过程 MARKOV DECISION PROCESS马尔可夫决策过程的本质是:当前状态向下一状态转移的概率和奖励值只取决于当前状态和选择的动作,而与历史状态和历史动作无关。因此在已知状态转移概率函数P和奖励函数R的环境模型知识下,可以采用动态规划技术求解最优策略。而强化学习着重研究在P函数和R函数未知的情况下,系统如何学习最优行为策略。16向阳书屋pMARKOV DECISION PROCESSCharacteristics of MDP:a set of states
12、: Sa set of actions : Aa reward function :R : S x A RA state transition function:T: S x A ( S) T (s,a,s): probability of transition from s to s using action a17向阳书屋p马尔可夫决策过程 MARKOV DECISION PROCESS18向阳书屋pMDP EXAMPLE:TransitionfunctionStates and rewardsBellman Equation:(Greedy policy selection)19向阳书屋
13、pMDP Graphical Representation, : T (s, action, s )Similarity to Hidden Markov Models (HMMs)20向阳书屋pReinforcement Learning Deterministic transitionsStochastic transitionsis the probability to reaching state j when taking action a in state istart3211234+1-1A simple environment that presents the agent w
14、ith a sequential decision problem:Move cost = 0.04(Temporal) credit assignment problem sparse reinforcement problemOffline alg: action sequences determined ex anteOnline alg: action sequences is conditional on observations along the way; Important in stochastic environment (e.g. jet flying)21向阳书屋pRe
15、inforcement Learning M = 0.8 in direction you want to go 0.2 in perpendicular 0.1 left0.1 rightPolicy: mapping from states to actions3211234+1-10.7053211234+1-1 0.8120.762 0.868 0.912 0.660 0.655 0.611 0.388An optimal policy for the stochastic environment:utilities of states:EnvironmentObservable (a
16、ccessible): percept identifies the statePartially observableMarkov property: Transition probabilities depend on state only, not on the path to the state.Markov decision problem (MDP).Partially observable MDP (POMDP): percepts does not have enough info to identify transition probabilities.22向阳书屋p动态规划
17、Dynamic Programming动态规划(dynamic programming)的方法通过从后继状态回溯到前驱状态来计算赋值函数。动态规划的方法基于下一个状态分布的模型来接连的更新状态。强化学习的动态规划的方法是基于这样一个事实:对任何策略和任何状态s,有(10.9)式迭代的一致的等式成立(as)是给定在随机策略下状态s时动作a的概率。(ssa)是在动作a下状态s转到状态s的概率。这就是对V的Bellman(1957)等式。23向阳书屋p动态规划Dynamic Programming - ProblemA discrete-time dynamic systemStates 1, ,
18、n + termination state 0Control U(i)Transition Probability pij(u)Accumulative cost structurePolicies24向阳书屋pFinite Horizon ProblemInfinite Horizon ProblemValue Iteration动态规划Dynamic Programming Iterative Solution 25向阳书屋p动态规划中的策略迭代/值迭代 policy evaluationpolicy improvement“greedification”Policy IterationV
19、alue Iteration26向阳书屋p动态规划方法TTTTTTTTTTTTT27向阳书屋p自适应动态规划(ADP)Idea: use the constraints (state transition probabilities) between states to speed learning.Solve = value determination.No maximization over actions because agent is passive unlike in value iteration.using DPLarge state spacee.g. Backgammon:
20、 1050 equations in 1050 variables28向阳书屋pValue Iteration AlgorithmAN ALTERNATIVE ITERATION: (Singh,1993)(Important for model free learning)Stop Iteration when V(s) differs less than .Policy difference ratio = 2 / (1- ) ( Williams & Baird 1993b)29向阳书屋pPolicy Iteration Algorithm Policies converge faste
21、r than values.Why faster convergence? 30向阳书屋p动态规划Dynamic Programming典型的动态规划模型作用有限,很多问题很难给出环境的完整模型。仿真机器人足球就是这样的问题,可以采用实时动态规划方法解决这个问题。在实时动态规划中不需要事先给出环境模型,而是在真实的环境中不断测试,得到环境模型。可以采用反传神经网络实现对状态泛化,网络的输入单元是环境的状态s, 网络的输出是对该状态的评价V(s)。31向阳书屋p没有模型的方法Model Free MethodsModels of the environment:T: S x A ( S) and
22、 R : S x A RDo we know them? Do we have to know them?Monte Carlo MethodsAdaptive Heuristic CriticQ Learning32向阳书屋p蒙特卡罗方法 Monte Carlo Methods 蒙特卡罗方法不需要一个完整的模型。而是它们对状态的整个轨道进行抽样,基于抽样点的最终结果来更新赋值函数。蒙特卡罗方法不需要经验,即从与环境联机的或者模拟的交互中抽样状态、动作和奖励的序列。联机的经验是令人感兴趣的,因为它不需要环境的先验知识,却仍然可以是最优的。从模拟的经验中学习功能也很强大。它需要一个模型,但它可以
23、是生成的而不是分析的,即一个模型可以生成轨道却不能计算明确的概率。于是,它不需要产生在动态规划中要求的所有可能转变的完整的概率分布。33向阳书屋pMonte Carlo方法TTTTTTTTTTTTTTTTTTTT34向阳书屋p蒙特卡罗方法 Monte Carlo Methods Idea: Hold statistics about rewards for each state Take the average This is the V(s)Based only on experience Assumes episodic tasks (Experience is divided into
24、episodes and all episodes will terminate regardless of the actions selected.) Incremental in episode-by-episode sense not step-by-step sense. 35向阳书屋pMonte Carlo策略评价Goal: learn Vp(s) under P and R are unknown in advanceGiven: some number of episodes under p which contain sIdea: Average returns observ
25、ed after visits to sEvery-Visit MC: average returns for every time s is visited in an episodeFirst-visit MC: average returns only for first time s is visited in an episodeBoth converge asymptotically1234536向阳书屋pProblem: Unvisited pairs(problem of maintaining exploration)For every make sure that:P( s
26、elected as a start state and action) 0 (Assumption of exploring starts ) 蒙特卡罗方法 37向阳书屋p蒙特卡罗控制How to select Policies:(Similar to policy evaluation) MC policy iteration: Policy evaluation using MC methods followed by policy improvement Policy improvement step: greedify with respect to value (or action
27、-value) function38向阳书屋p时序差分学习 Temporal-Difference时序差分学习中没有环境模型,根据经验学习。每步进行迭代,不需要等任务完成。预测模型的控制算法,根据历史信息判断将来的输入和输出,强调模型的函数而非模型的结构。时序差分方法和蒙特卡罗方法类似,仍然采样一次学习循环中获得的瞬时奖惩反馈,但同时类似与动态规划方法采用自举方法估计状态的值函数。然后通过多次迭代学习,去逼近真实的状态值函数。39向阳书屋p时序差分学习 TDTTTTTTTTTTTTTTTTTTTT40向阳书屋p时序差分学习 Temporal-Differencetarget: the actu
28、al return after time ttarget: an estimate of the return41向阳书屋p时序差分学习 (TD)Idea: Do ADP backups on a per move basis, not for the whole state space.Theorem: Average value of U(i) converges to the correct value.Theorem: If is appropriately decreased as a function of times a state is visited (=Ni), then
29、U(i) itself converges to the correct value42向阳书屋pTD(l) A Forward ViewTD(l) is a method for averaging all n-step backups weight by ln-1 (time since visitation)l-return: Backup using l-return:43向阳书屋p时序差分学习算法 TD()Idea: update from the whole epoch, not just on state transition.Special cases:=1: Least-me
30、an-square (LMS), Mont Carlo=0: TDIntermediate choice of (between 0 and 1) is best. Interplay with 44向阳书屋p时序差分学习算法 TD()算法 10.1 TD(0)学习算法Initialize V(s) arbitrarily, to the policy to be evaluatedRepeat (for each episode) Initialize s Repeat (for each step of episode) Choose a from s using policy deriv
31、ed from V(e.g., -greedy) Take action a, observer r, s Until s is terminal 45向阳书屋p时序差分学习算法46向阳书屋p时序差分学习算法收敛性TD()Theorem: Converges w.p. 1 under certain boundaries conditions.Decrease i(t) s.t. In practice, often a fixed is used for all i and t.47向阳书屋p时序差分学习 TD48向阳书屋pQ-learningWatkins, 1989在Q学习中,回溯从动作
32、结点开始,最大化下一个状态的所有可能动作和它们的奖励。在完全递归定义的Q学习中,回溯树的底部结点一个从根结点开始的动作和它们的后继动作的奖励的序列可以到达的所有终端结点。联机的Q学习,从可能的动作向前扩展,不需要建立一个完全的世界模型。Q学习还可以脱机执行。我们可以看到,Q学习是一种时序差分的方法。49向阳书屋pQ-learning在Q学习中,Q是状态-动作对到学习到的值的一个函数。对所有的状态和动作: Q: (state x action) value 对Q学习中的一步: (10.15)其中c和都1,rt+1是状态st+1的奖励。 50向阳书屋pQ-LearningEstimate the
33、Q-function using some approximator (for example, linear regression or neural networks or decision trees etc.).Derive the estimated policy as an argument of the maximum of the estimated Q-function.Allow different parameter vectors at different time points.Let us illustrate the algorithm with linear r
34、egression as the approximator, and of course, squared error as the appropriate loss function.51向阳书屋pQ-learningQ (a,i)Direct approach (ADP) would require learning a model .Q-learning does not:Do this update after each state transition:52向阳书屋pExplorationTradeoff between exploitation (control) and expl
35、oration (identification) Extremes: greedy vs. random acting(n-armed bandit models)Q-learning converges to optimal Q-values if* Every state is visited infinitely often (due to exploration),* The action selection becomes greedy as time approaches infinity, and* The learning rate a is decreased fast en
36、ough but not too fast (as we discussed in TD learning)53向阳书屋pCommon exploration methodsIn value iteration in an ADP agent: Optimistic estimate of utility U+(i)-greedy methodNongreedy actions Greedy actionBoltzmann explorationExploration funcR+ if nNu o.w.54向阳书屋pQ-Learning AlgorithmQ学习算法Initialize Q(
37、s,a) arbitrarilyRepeat (for each episode) Initialize s Repeat (for each step of episode) Choose a from s using policy derived from Q (e.g., -greedy)Take action a, observer r, s Until s is terminal55向阳书屋pQ-Learning AlgorithmSetForThe estimated policy satisfies56向阳书屋pWhat is the intuition?Bellman equa
38、tion gives If and the training set were infinite, then Q-learning minimizes which is equivalent to minimizing57向阳书屋pA-Learning Murphy, 2003 and Robins, 2004Estimate the A-function (advantages) using some approximator, as in Q-learning.Derive the estimated policy as an argument of the maximum of the
39、estimated A-function.Allow different parameter vectors at different time points.Let us illustrate the algorithm with linear regression as the approximator, and of course, squared error as the appropriate loss function.58向阳书屋pA-Learning Algorithm (Inefficient Version)ForThe estimated policy satisfies
40、59向阳书屋pDifferences between Q and A-learningQ-learningAt time t we model the main effects of the history, (St,At-1) and the action At and their interactionOur Yt-1 is affected by how we modeled the main effect of the history in time t, (St,At-1) A-learningAt time t we only model the effects of At and
41、 its interaction with (St,At-1) Our Yt-1 does not depend on a model of the main effect of the history in time t, (St,At-1) 60向阳书屋pQ-Learning Vs. A-LearningRelative merits and demerits are not completely known till now.Q-learning has low variance but high bias.A-learning has high variance but low bia
42、s. Comparison of Q-learning with A-learning involves a bias-variance trade-off.61向阳书屋pPOMDP部分感知马氏决策过程 Rather than observing the state we observe some function of the state.Ob Observable functiona random variable for each states.Problem : different states may look similarThe optimal strategy might ne
43、ed to consider the history.62向阳书屋pFramework of POMDPPOMDP由六元组定义。其中定义了环境潜在的马尔可夫决策模型上,是观察的集合,即系统可以感知的世界状态集合,观察函数:SAPD()。系统在采取动作a转移到状态s时,观察函数确定其在可能观察上的概率分布。记为(s, a, o)。1 可以是S的子集,也可以与S无关63向阳书屋pPOMDPsWhat if state information (from sensors) is noisy?Mostly the case!MDP techniques are suboptimal!Two halls
44、 are not the same.64向阳书屋pPOMDPs A Solution StrategySE: Belief State Estimator (Can be based on HMM): MDP Techniques65向阳书屋pPOMDP_信度状态方法Idea: Given a history of actions and observable value, we compute a posterior distribution for the state we are in (belief state)The belief-state MDPStates: distribut
45、ion over S (states of the POMDP)Actions: as in POMDPTransition: the posterior distribution (given the observation)Open Problem : How to deal with the continuous distribution? 66向阳书屋pThe Learning Process of Belief MDP67向阳书屋pMajor Methods to Solve POMDP 算法名称基本思想学习值函数Memoryless policies直接采用标准的强化学习算法Sim
46、ple memory based approaches使用k个历史观察表示当前状态UDM(Utile Distinction Memory)分解状态,构建有限状态机模型NSM(Nearest Sequence Memory)存储状态历史,进行距离度量USM(Utile Suffix Memory)综合UDM和NSM两种方法Recurrent-Q使用循环神经网络进行状态预测策略搜索Evolutionary algorithms使用遗传算法直接进行策略搜索Gradient ascent method使用梯度下降(上升)法搜索68向阳书屋p强化学习中的函数估计RLFASubset of states
47、Value estimate as targetsV (s)Generalization of the value function to the entire state spaceis the TD operator.is the function approximation operator.69向阳书屋p并行两个迭代过程值函数迭代过程值函数逼近过程How to construct the M function? Using state cluster, interpolation, decision tree or neural network?70向阳书屋pFunction Appr
48、oximator: V( s) = f( s, w)Update: Gradient-descent Sarsa: w w + a rt+1 + g Q(st+1,at+1)- Q(st,at) w f(st,at,w)weight vectorStandard gradienttarget valueestimated valueOpen Problem : How to design the non-liner FA system which can converge with the incremental instances? 并行两个迭代过程71向阳书屋pSemi-MDPDiscre
49、te timeHomogeneous discountContinuous timeDiscrete eventsInterval-dependent discountDiscrete timeDiscrete eventsInterval-dependent discountA discrete-time SMDP overlaid on an MDPCan be analyzed at either level. One approach to Temporal Hierarchical RL72向阳书屋pThe equations73向阳书屋pMulti-agent MDPDistrib
50、uted RLMarkov GameBest ResponseEnvironmentactionstaterewardRLAgentRLAgent74向阳书屋p三种观点问题空间主要方法算法准则合作多agent强化学习分布、同构、合作环境交换状态提高学习收敛速度交换经验交换策略交换建议基于平衡解多agent强化学习同构或异构、合作或竞争环境极小极大-Q理性和收敛性NASH-QCE-QWoLF最佳响应多agent强化学习异构、竞争环境PHC收敛性和不遗憾性IGAGIGAGIGA-WoLF75向阳书屋p马尔可夫对策在n个agent的系统中,定义离散的状态集S(即对策集合G),agent动作集Ai的集
51、合A, 联合奖赏函数Ri:SA1An和状态转移函数P:SA1AnPD(S)。 76向阳书屋p基于平衡解方法的强化学习Open Problem : Nash equilibrium or other equilibrium is enough? The optimal policy in single game is Nash equilibrium.77向阳书屋pApplications of RLCheckers Samuel 59TD-Gammon Tesauro 92Worlds best downpeak elevator dispatcher Crites at al 95Inven
52、tory management Bertsekas et al 9510-15% better than industry standardDynamic channel assignment Singh & Bertsekas, Nie&Haykin 95Outperforms best heuristics in the literatureCart-pole Michie&Chambers 68- with bang-bang controlRobotic manipulation Grupen et al. 93-Path planningRobot docking Lin 93Par
53、kingFootball Stone98TetrisMultiagent RL Tan 93, Sandholm&Crites 95, Sen 94-, Carmel&Markovitch 95-, lots of work sinceCombinatorial optimization: maintenance & repairControl of reasoning Zhang & Dietterich IJCAI-9578向阳书屋p仿真机器人足球 应用Q学习算法进行仿真机器人足球2 对1 训练,训练的目的是试图使主体学习获得到一种战略上的意识,能够在进攻中进行配合 79向阳书屋p仿真机器
54、人足球 前锋A控球,并且在可射门的区域内,但是A已经没有射门角度了;队友B也处于射门区域,并且B具有良好的射门角度。A传球给B,射门由B来完成,那么这次进攻配合就会很成功。通过Q学习的方法来进行2 对1的射门训练,让A掌握在这种状态情况下传球给B的动作是最优的策略;主体通过大量的学习训练(大数量级的状态量和重复相同状态)来获得策略,因此更具有适应性 。80向阳书屋p仿真机器人足球 状态描述,将进攻禁区划分为个小区域,每个小区域是边长为2m的正方形,一个二维数组()便可描述这个区域。使用三个Agent的位置来描述2 对 1进攻时的环境状态,利用图10.11所示的划分来泛化状态。可认为主体位于同一战略区域为相似状态,这样对状态的描述虽然不精确,但设计所需的是一种战略层次的描述,可认为Agent在战略区域内是积极跑动的,这种方法满足了需求。如此,便描述了一个特定的状态;其中,是进攻队员A的区域编号,是进攻队员B的区域编号,是守门员的区域编号。区域编号计算公式为:。相应的,所保存的状态值为三个区域编号组成的对。前锋A控球,并且在可射门的区域内,但是A已经没有射门角度了;队友B也处于射门区域,并且B具有良好的射门角度。A传球给B,射门由B来完成,那么这次进攻配合就会很成功。通过Q学习的方法来进行2 对1的射门训练,让A掌握在这种状态情况下传球给B的动作是最优的策略;主体通过大量的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 解除恋爱关系协议书
- 酒店出租合伙协议书
- 餐饮引入合作协议书
- 香蕉仓库转让协议书
- 保障性住房过户协议书
- 下水管改道双方协议书
- 车撞到到房子协议书
- 防雷检测安全协议书
- 鄱阳招商引资协议书
- 初期合伙人合同协议书
- 2025-2030全球及中国燃气轮机服务行业市场现状供需分析及市场深度研究发展前景及规划可行性分析研究报告
- 2025-2030中国老年教育行业发展前景及发展策略与投资风险研究报告
- 初中学生安全教育课件
- 2025年下半年度云南云勤服务集团限责任公司高校毕业生公开招聘13人易考易错模拟试题(共500题)试卷后附参考答案
- 2024年延安通和电业有限责任公司招聘考试真题
- 2024年新人教版英语三年级上册 U6 A learn 教学课件
- 辽宁省点石联考2025届高三下学期5月联合考试 地理 含答案
- 项目平行分包协议书范本
- 茶廉文化课件
- 让空气更清新(教学课件)五年级科学下册(青岛版)
- 2024年中南大学专职辅导员招聘笔试真题
评论
0/150
提交评论