版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1如图,甲圆柱型容器的底面积为30cm2,高为8cm,乙圆柱型容器底面积为xcm2,若将甲容器装满水,然后再将甲容器里的水全部倒入乙容器中(乙容器无水溢出),则乙容器水面高度y(cm
2、)与x(cm2)之间的大致图象是()ABCD2在一个不透明的口袋中装有4个红球和若干个白球,他们除颜色外其他完全相同通过多次摸球实验后发现,摸到红球的频率稳定在25%附近,则口袋中白球可能有( )A16个B15个C13个D12个3有四包真空包装的火腿肠,每包以标准质量450g为基准,超过的克数记作正数,不足的克数记作负数下面的数据是记录结果,其中与标准质量最接近的是()A+2B3C+4D14如图,直线ab,点A在直线b上,BAC=100,BAC的两边与直线a分别交于B、C两点,若2=32,则1的大小为()A32B42C46D485某学习小组做“用频率估计概率”的实验时,统计了某一结果出现的频率
3、,绘制了如下折线统计图,则符合这一结果的实验最有可能的是()A袋中装有大小和质地都相同的3个红球和2个黄球,从中随机取一个,取到红球B掷一枚质地均匀的正六面体骰子,向上的面的点数是偶数C先后两次掷一枚质地均匀的硬币,两次都出现反面D先后两次掷一枚质地均匀的正六面体骰子,两次向上的面的点数之和是7或超过96如图所示的四个图案是四国冬季奥林匹克运动会会徽图案上的一部分图形,其中为轴对称图形的是()ABCD7已知空气的单位体积质量是0.001239g/cm3,则用科学记数法表示该数为( )A1.239103g/cm3B1.239102g/cm3C0.1239102g/cm3D12.39104g/cm
4、38如图,在RtABC中,ACB=90,A=30,D,E,F分别为AB,AC,AD的中点,若BC=2,则EF的长度为()A12 B1 C32 D39若=1,则符合条件的m有()A1个B2个C3个D4个10一、单选题在某校“我的中国梦”演讲比赛中,有7名学生参加了决赛,他们决赛的最终成绩各不相同其中的一名学生想要知道自己能否进入前3名,不仅要了解自己的成绩,还要了解这7名学生成绩的()A平均数B众数C中位数D方差11如图,正六边形A1B1C1D1E1F1的边长为2,正六边形A2B2C2D2E2F2的外接圆与正六边形A1B1C1D1E1F1的各边相切,正六边形A3B3C3D3E3F3的外接圆与正六
5、边形A2B2C2D2E2F2的各边相切,按这样的规律进行下去,A11B11C11D11E11F11的边长为()ABCD12小明早上从家骑自行车去上学,先走平路到达点A,再走上坡路到达点B,最后走下坡路到达学校,小明骑自行车所走的路程s(单位:千米)与他所用的时间t(单位:分钟)的关系如图所示,放学后,小明沿原路返回,且走平路、上坡路、下坡路的速度分别保持和去上学时一致,下列说法:小明家距学校4千米;小明上学所用的时间为12分钟;小明上坡的速度是0.5千米/分钟;小明放学回家所用时间为15分钟其中正确的个数是()A1个B2个C3个D4个二、填空题:(本大题共6个小题,每小题4分,共24分)13某
6、自然保护区为估计该地区一种珍稀鸟类的数量,先捕捉了20只,给它们做上标记后放回,过一段时间待它们完全混合于同类后又捕捉了20只,发现其中有4只带有标记,从而估计该地区此种鸟类的数量大约有_只14如图,在RtABC中,ACB90,ACBC6cm,动点P从点A出发,沿AB方向以每秒cm的速度向终点B运动;同时,动点Q从点B出发沿BC方向以每秒lcm的速度向终点C运动,将PQC沿BC翻折,点P的对应点为点P,设Q点运动的时间为t秒,若四边形QPCP为菱形,则t的值为_15关于x的方程(m5)x23x1=0有两个实数根,则m满足_16如图,AB是O的直径,弦CDAB,垂足为E,如果AB=26,CD=2
7、4,那么sinOCE= 17如图,点 A 是反比例函数 y(x0)图象上的点,分别过点 A 向横轴、纵轴作垂线段,与坐标轴恰好围成一个正方形,再以正方形的一组对边为直径作两个半圆,其余部分涂上阴影,则阴影部分的面积为_18如图,在矩形ABCD中,AB=4,BC=6,点E为BC的中点,将ABE沿AE折叠,使点B落在矩形内点F处,连接CF,则CF的长度为_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)如图,在平行四边形ABCD中,E、F为AD上两点,AE=EF=FD,连接BE、CF并延长,交于点G, GB=GC(1)求证:四边形ABCD是矩形;(1)若
8、GEF的面积为1求四边形BCFE的面积;四边形ABCD的面积为 20(6分)如图,矩形ABCD中,点P是线段AD上一动点,O为BD的中点,PO的延长线交BC于Q(1)求证:OP=OQ;(2)若AD=8厘米,AB=6厘米,P从点A出发,以1厘米/秒的速度向D运动(不与D重合)设点P运动时间为t秒,请用t表示PD的长;并求t为何值时,四边形PBQD是菱形21(6分)图1所示的遮阳伞,伞柄垂直于水平地面,其示意图如图2、当伞收紧时,点P与点A重合;当伞慢慢撑开时,动点P由A向B移动;当点P到达点B时,伞张得最开、已知伞在撑开的过程中,总有PM=PN=CM=CN=6.0分米,CE=CF=18.0分米,
9、BC=2.0分米、设AP=x分米(1)求x的取值范围;(2)若CPN=60,求x的值;(3)设阳光直射下,伞下的阴影(假定为圆面)面积为y,求y关于x的关系式(结果保留)22(8分)如图,已知抛物线的对称轴为直线,且抛物线与轴交于、两点,与轴交于点,其中,.(1)若直线经过、两点,求直线和抛物线的解析式;(2)在抛物线的对称轴上找一点,使点到点的距离与到点的距离之和最小,求出点的坐标;(3)设点为抛物线的对称轴上的一个动点,求使为直角三角形的点的坐标.23(8分)如图,抛物线y=x2+bx+c与x轴交于点A(1,0)和点B,与y轴交于C(0,3),直线y=+m经过点C,与抛物线的另一交点为点D
10、,点P是直线CD上方抛物线上的一个动点,过点P作PFx轴于点F,交直线CD于点E,设点P的横坐标为m(1)求抛物线解析式并求出点D的坐标;(2)连接PD,CDP的面积是否存在最大值?若存在,请求出面积的最大值;若不存在,请说明理由;(3)当CPE是等腰三角形时,请直接写出m的值24(10分)如图,AB、AC分别是O的直径和弦,ODAC于点D过点A作O的切线与OD的延长线交于点P,PC、AB的延长线交于点F(1)求证:PC是O的切线;(2)若ABC60,AB10,求线段CF的长25(10分)如图,已知A(4,),B(1,m)是一次函数y=kx+b与反比例函数y=图象的两个交点,ACx轴于点C,B
11、Dy轴于点D(1)求m的值及一次函数解析式;(2)P是线段AB上的一点,连接PC、PD,若PCA和PDB面积相等,求点P坐标26(12分)如图,AC是O的直径,BC是O的弦,点P是O外一点,连接PA、PB、AB、OP,已知PB是O的切线(1)求证:PBA=C;(2)若OPBC,且OP=9,O的半径为3,求BC的长27(12分)自学下面材料后,解答问题。分母中含有未知数的不等式叫分式不等式。如: 0,b0,则0;若a0,b0;若a0,b0,则0;若a0,则0,则 或 ,(1)若0的解集.参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的
12、)1、C【解析】根据题意可以写出y关于x的函数关系式,然后令x=40求出相应的y值,即可解答本题【详解】解:由题意可得,y=,当x=40时,y=6,故选C【点睛】本题考查了反比例函数的图象,根据题意列出函数解析式是解决此题的关键2、D【解析】由摸到红球的频率稳定在25%附近得出口袋中得到红色球的概率,进而求出白球个数即可【详解】解:设白球个数为:x个,摸到红色球的频率稳定在25%左右,口袋中得到红色球的概率为25%, ,解得:x=12,经检验x=12是原方程的根,故白球的个数为12个故选:D【点睛】本题考查了利用频率估计概率,根据大量反复试验下频率稳定值即概率得出是解题的关键3、D【解析】试题
13、解析:因为|+2|=2,|-3|=3,|+4|=4,|-1|=1,由于|-1|最小,所以从轻重的角度看,质量是-1的工件最接近标准工件故选D4、D【解析】根据平行线的性质与对顶角的性质求解即可.【详解】ab,BCA=2,BAC=100,2=32CBA=180-BAC-BCA=180-100-32=48.1=CBA=48.故答案选D.【点睛】本题考查了平行线的性质,解题的关键是熟练的掌握平行线的性质与对顶角的性质.5、D【解析】根据统计图可知,试验结果在0.33附近波动,即其概率P0.33,计算四个选项的概率,约为0.33者即为正确答案【详解】解: 根据统计图可知,试验结果在0.33附近波动,即
14、其概率P0.33,A、袋中装有大小和质地都相同的3个红球和2个黄球,从中随机取一个,取到红球的概率为,不符合题意;B、掷一枚质地均匀的正六面体骰子,向上的面的点数是偶数的概率为,不符合题意;C、先后两次掷一枚质地均匀的硬币,两次都出现反面的概率为,不符合题意;D、先后两次掷一枚质地均匀的正六面体骰子,两次向上的面的点数之和是7或超过9的概率为,符合题意,故选D【点睛】本题考查了利用频率估计概率,大量反复试验下频率稳定值即概率用到的知识点为:概率=所求情况数与总情况数之比6、D【解析】根据轴对称图形的概念求解【详解】解:根据轴对称图形的概念,A、B、C都不是轴对称图形,D是轴对称图形故选D【点睛
15、】本题主要考查轴对称图形,轴对称图形的判断方法:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形7、A【解析】试题分析:0.001219=1.219101故选A考点:科学记数法表示较小的数8、B【解析】根据题意求出AB的值,由D是AB中点求出CD的值,再由题意可得出EF是ACD的中位线即可求出.【详解】ACB=90,A=30, BC=12AB. BC=2, AB=2BC=22=4, D是AB的中点, CD=12AB=12 4=2. E,F分别为AC,AD的中点, EF是ACD的中位线. EF=12CD=12 2=1.故答案选B.【点睛】本题考查的知识点是三角
16、形中位线定理,解题的关键是熟练的掌握三角形中位线定理.9、C【解析】根据有理数的乘方及解一元二次方程-直接开平方法得出两个有关m的等式,即可得出.【详解】=1 m2-9=0或m-2= 1 即m= 3或m=3,m=1 m有3个值故答案选C.【点睛】本题考查的知识点是有理数的乘方及解一元二次方程-直接开平方法,解题的关键是熟练的掌握有理数的乘方及解一元二次方程-直接开平方法.10、C【解析】由于其中一名学生想要知道自己能否进入前3名,共有7名选手参加,故应根据中位数的意义分析【详解】由于总共有7个人,且他们的成绩各不相同,第4的成绩是中位数,要判断是否进入前3名,故应知道中位数的多少故选C【点睛】
17、此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义反映数据集中程度的统计量有平均数、中位数、众数、方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用11、A【解析】分析:连接OE1,OD1,OD2,如图,根据正六边形的性质得E1OD1=60,则E1OD1为等边三角形,再根据切线的性质得OD2E1D1,于是可得OD2=E1D1=2,利用正六边形的边长等于它的半径得到正六边形A2B2C2D2E2F2的边长=2,同理可得正六边形A3B3C3D3E3F3的边长=()22,依此规律可得正六边形A11B11C11D11E11F11的边长=()102,然后化简即可详解:连接OE1
18、,OD1,OD2,如图,六边形A1B1C1D1E1F1为正六边形,E1OD1=60,E1OD1为等边三角形,正六边形A2B2C2D2E2F2的外接圆与正六边形A1B1C1D1E1F1的各边相切,OD2E1D1,OD2=E1D1=2,正六边形A2B2C2D2E2F2的边长=2,同理可得正六边形A3B3C3D3E3F3的边长=()22,则正六边形A11B11C11D11E11F11的边长=()102=故选A点睛:本题考查了正多边形与圆的关系:把一个圆分成n(n是大于2的自然数)等份,依次连接各分点所得的多边形是这个圆的内接正多边形,这个圆叫做这个正多边形的外接圆记住正六边形的边长等于它的半径12、
19、C【解析】从开始到A是平路,是1千米,用了3分钟,则从学校到家门口走平路仍用3分钟,根据图象求得上坡(AB段)、下坡(B到学校段)的路程与速度,利用路程除以速度求得每段所用的时间,相加即可求解【详解】解:小明家距学校4千米,正确;小明上学所用的时间为12分钟,正确;小明上坡的速度是千米/分钟,错误;小明放学回家所用时间为3+2+1015分钟,正确;故选:C【点睛】本题考查利用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决需注意计算单位的统一二、填空题:(本大题共6个小题,每小题4分,共24分)13、1【解析】求出样本中有标记的所
20、占的百分比,再用样本容量除以百分比即可解答【详解】解: 只故答案为:1【点睛】本题考查的是通过样本去估计总体,总体百分比约等于样本百分比14、1【解析】作PDBC于D,PEAC于E,如图,AP=t,BQ=tcm,(0t6)C=90,AC=BC=6cm,ABC为直角三角形,A=B=45,APE和PBD为等腰直角三角形,PE=AE=AP=tcm,BD=PD,CE=ACAE=(6t)cm,四边形PECD为矩形,PD=EC=(6t)cm,BD=(6t)cm,QD=BDBQ=(61t)cm,在RtPCE中,PC1=PE1+CE1=t1+(6t)1,在RtPDQ中,PQ1=PD1+DQ1=(6t)1+(6
21、1t)1,四边形QPCP为菱形,PQ=PC,t1+(6t)1=(6t)1+(61t)1,t1=1,t1=6(舍去),t的值为1故答案为1【点睛】此题主要考查了菱形的性质,勾股定理,关键是要熟记定理的内容并会应用 .15、m且m1【解析】根据一元二次方程的定义和判别式的意义得到m10且 然后求出两个不等式的公共部分即可【详解】解:根据题意得m10且解得且m1故答案为: 且m1【点睛】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a0)的根与=b24ac有如下关系:当0时,方程有两个不相等的实数根;当=0时,方程有两个相等的实数根;当0时,方程无实数根16、【解析】垂径定理,勾股定理,锐
22、角三角函数的定义。【分析】如图,设AB与CD相交于点E,则根据直径AB=26,得出半径OC=13;由CD=24,CDAB,根据垂径定理得出CE=12;在RtOCE中,利用勾股定理求出OE=5;再根据正弦函数的定义,求出sinOCE的度数:。17、4【解析】由题意可以假设A(-m,m),则-m2=-4,求出点A坐标即可解决问题.【详解】由题意可以假设A(-m,m),则-m2=-4,m=2,m=2,S阴=S正方形-S圆=4-,故答案为4-【点睛】本题考查反比例函数图象上的点的特征、正方形的性质、圆的面积公式等知识,解题的关键是灵活运用所学知识解决问题18、【解析】分析题意,如图所示,连接BF,由翻
23、折变换可知,BFAE,BE=EF,由点E是BC的中点可知BE=3,根据勾股定理即可求得AE;根据三角形的面积公式可求得BH,进而可得到BF的长度;结合题意可知FE=BE=EC,进而可得BFC=90,至此,在RtBFC中,利用勾股定理求出CF的长度即可【详解】如图,连接BF.AEF是由ABE沿AE折叠得到的,BFAE,BE=EF.BC=6,点E为BC的中点,BE=EC=EF=3根据勾股定理有AE=AB+BE代入数据求得AE=5根据三角形的面积公式得BH=即可得BF= 由FE=BE=EC,可得BFC=90再由勾股定理有BC-BF=CF代入数据求得CF= 故答案为【点睛】此题考查矩形的性质和折叠问题
24、,解题关键在于利用好折叠的性质三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1)证明见解析;(1)16;14;【解析】(1)根据平行四边形的性质得到ADBC,AB=DC,ABCD于是得到BE=CF,根据全等三角形的性质得到A=D,根据平行线的性质得到A+D=180,由矩形的判定定理即可得到结论;(1)根据相似三角形的性质得到,求得GBC的面积为18,于是得到四边形BCFE的面积为16;根据四边形BCFE的面积为16,列方程得到BCAB=14,即可得到结论【详解】(1)证明:GB=GC,GBC=GCB,在平行四边形ABCD中,ADBC,AB=DC,ABC
25、D,GB-GE=GC-GF,BE=CF,在ABE与DCF中,ABEDCF,A=D,ABCD,A+D=180,A=D=90,四边形ABCD是矩形;(1)EFBC,GFEGBC,EF=AD,EF=BC,GEF的面积为1,GBC的面积为18,四边形BCFE的面积为16,;四边形BCFE的面积为16,(EF+BC)AB=BCAB=16,BCAB=14,四边形ABCD的面积为14,故答案为:14【点睛】本题考查了相似三角形的判定和性质,矩形的判定和性质,图形面积的计算,全等三角形的判定和性质,证得GFEGBC是解题的关键20、(1)证明见解析(2)74 【解析】试题分析:(1)先根据四边形ABCD是矩形
26、,得出ADBC,PDO=QBO,再根据O为BD的中点得出PODQOB,即可证得OP=OQ;(2)根据已知条件得出A的度数,再根据AD=8cm,AB=6cm,得出BD和OD的长,再根据四边形PBQD是菱形时,利用勾股定理即可求出t的值,判断出四边形PBQD是菱形试题解析:(1)证明:因为四边形ABCD是矩形,所以ADBC,所以PDO=QBO,又因为O为BD的中点,所以OB=OD,在POD与QOB中,PDO=QBO,OB=OD,POD=QOB,所以PODQOB,所以OP=OQ(2)解:PD=8-t,因为四边形PBQD是菱形,所以PD=BP=8-t,因为四边形ABCD是矩形,所以A=90,在RtAB
27、P中,由勾股定理得:AB2+AP2=BP2,即62+t2=(8-t)2,解得:t=74,即运动时间为74秒时,四边形PBQD是菱形考点:矩形的性质;菱形的性质;全等三角形的判断和性质勾股定理21、(1)0 x10;(1)x=6;(3)y=x1+54x【解析】(1)根据题意,得AC=CN+PN,进一步求得AB的长,即可求得x的取值范围;(1)根据等边三角形的判定和性质即可求解;(3)连接MN、EF,分别交AC于B、H此题根据菱形CMPN的性质求得MB的长,再根据相似三角形的对应边的比相等,求得圆的半径即可【详解】(1)BC=1分米,AC=CN+PN=11分米,AB=ACBC=10分米,x的取值范
28、围是:0 x10;(1)CN=PN,CPN=60,PCN是等边三角形,CP=6分米,AP=ACPC=6分米,即当CPN=60时,x=6;(3)连接MN、EF,分别交AC于B、H,PM=PN=CM=CN,四边形PNCM是菱形,MN与PC互相垂直平分,AC是ECF的平分线,PB=6-,在RtMBP中,PM=6分米,MB1=PM1PB1=61(6x)1=6xx1CE=CF,AC是ECF的平分线,EH=HF,EFAC,ECH=MCB,EHC=MBC=90,CMBCEH,=,EH1=9MB1=9(6xx1),y=EH1=9(6xx1),即y=x1+54x【点睛】此题主要考查了相似三角形的应用以及菱形的性
29、质和二次函数的应用,难点是第(3)问,熟练运用菱形的性质、相似三角形的性质和二次函数的实际应用22、(1)抛物线的解析式为,直线的解析式为.(2);(3)的坐标为或或或.【解析】分析:(1)先把点A,C的坐标分别代入抛物线解析式得到a和b,c的关系式,再根据抛物线的对称轴方程可得a和b的关系,再联立得到方程组,解方程组,求出a,b,c的值即可得到抛物线解析式;把B、C两点的坐标代入直线y=mx+n,解方程组求出m和n的值即可得到直线解析式;(2)设直线BC与对称轴x=-1的交点为M,此时MA+MC的值最小把x=-1代入直线y=x+3得y的值,即可求出点M坐标;(3)设P(-1,t),又因为B(
30、-3,0),C(0,3),所以可得BC2=18,PB2=(-1+3)2+t2=4+t2,PC2=(-1)2+(t-3)2=t2-6t+10,再分三种情况分别讨论求出符合题意t值即可求出点P的坐标详解:(1)依题意得:,解得:,抛物线的解析式为.对称轴为,且抛物线经过,把、分别代入直线,得,解之得:,直线的解析式为.(2)直线与对称轴的交点为,则此时的值最小,把代入直线得,.即当点到点的距离与到点的距离之和最小时的坐标为.(注:本题只求坐标没说要求证明为何此时的值最小,所以答案未证明的值最小的原因).(3)设,又,若点为直角顶点,则,即:解得:,若点为直角顶点,则,即:解得:,若点为直角顶点,则
31、,即:解得:,.综上所述的坐标为或或或.点睛:本题综合考查了二次函数的图象与性质、待定系数法求函数(二次函数和一次函数)的解析式、利用轴对称性质确定线段的最小长度、难度不是很大,是一道不错的中考压轴题23、(1)y=x2+2x+3,D点坐标为();(2)当m=时,CDP的面积存在最大值,最大值为;(3)m的值为 或 或【解析】(1)利用待定系数法求抛物线解析式和直线CD的解析式,然后解方程组得D点坐标;(2)设P(m,-m2+2m+3),则E(m,-m+3),则PE=-m2+m,利用三角形面积公式得到SPCD=(-m2+m)=-m2+m,然后利用二次函数的性质解决问题;(3)讨论:当PC=PE
32、时,m2+(-m2+2m+3-3)2=(-m2+m)2;当CP=CE时,m2+(-m2+2m+3-3)2=m2+(-m+3-3)2;当EC=EP时,m2+(-m+3-3)2=(-m2+m)2,然后分别解方程即可得到满足条件的m的值【详解】(1)把A(1,0),C(0,3)分别代入y=x2+bx+c得,解得,抛物线的解析式为y=x2+2x+3;把C(0,3)代入y=x+n,解得n=3,直线CD的解析式为y=x+3,解方程组,解得 或,D点坐标为(,);(2)存在设P(m,m2+2m+3),则E(m,m+3),PE=m2+2m+3(m+3)=m2+m,SPCD=(m2+m)=m2+m=(m)2+,当m=时,CDP的面积存在最大值,最大值为;(3)当PC=PE时,m2+(m2+2m+33)2=(m2+m)2,解得m=0(舍去)或m=;当CP=CE时,m2+(m2+2m+33)2=m2+(m+33)2,解得m=0(舍去)或m=(舍去)或m=;当EC=EP时,m2+(m+33)2=(m2+m)2,解得m=(舍去)或m=,综上所述,m的值为或或【点睛】本题考核知识点:二次函数的综合应用. 解题关键点:灵活运用二次函数性质,运
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025机械设备的买卖合同
- 洛阳理工学院《工科大学化学-物理化学(二)》2023-2024学年第一学期期末试卷
- 污水处理厂导向钻进施工合同
- 墙绘施工合同范本
- 教育培训机构劳务管理
- 食品企业财务健康检查
- 2024年动力煤进口清关共享成功之道!3篇
- 广西壮族自治区河池市2023-2024学年高一上学期1月期末考试数学试题(解析版)
- 医疗器械招投标管理规范
- 医药招投标项目招标文件编制
- 国家开放大学电大《建筑制图基础》机考三套标准题库及答案3
- 降低故障工单回复不合格率
- 可涂色简笔画打印(共20页)
- 灯光架介绍及使用说明
- 十一学校行动纲要
- GB 1886.6-2016 食品安全国家标准 食品添加剂 硫酸钙(高清版)
- 关于房屋征收及土地收储过程中的税收政策(仅供参考)
- 唯一住房补贴申请书(共2页)
- 单面多轴钻孔组合机床动力滑台液压系统课程设计
- 中医养生脾胃为先PPT文档
- 门窗工程成品保护方案(附图)
评论
0/150
提交评论