版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡
2、一并交回。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1如图,ABC是ABC以点O为位似中心经过位似变换得到的,若ABC的面积与ABC的面积比是4:9,则OB:OB为()A2:3B3:2C4:5D4:92点A(2,5)关于原点对称的点的坐标是 ( )A(2,5) B(2,5) C(2,5) D(5,2)3数据4,8,4,6,3的众数和平均数分别是( )A5,4B8,5C6,5D4,54如图,AB是O的直径,点C,D,E在O上,若AED20,则BCD的度数为()A100B110C115D1205如图,在ABC中,BC=8,AB的中垂线交
3、BC于D,AC的中垂线交BC于E,则ADE的周长等于()A8B4C12D166在解方程1时,两边同时乘6,去分母后,正确的是()A3x162(3x1)B(x1)12(x1)C3(x1)12(3x1)D3(x1)62(3x1)7如图,将RtABC绕直角项点C顺时针旋转90,得到A BC,连接AA,若1=20,则B的度数是( ) A70B65C60D558若点都是反比例函数的图象上的点,并且,则下列各式中正确的是( )ABCD9如图,ABC中,C=90,D、E是AB、BC上两点,将ABC沿DE折叠,使点B落在AC边上点F处,并且DFBC,若CF=3,BC=9,则AB的长是( ) AB15CD910
4、反比例函数y=1-6tx的图象与直线y=x+2有两个交点,且两交点横坐标的积为负数,则t的取值范围是( )At16 Bt16 Ct16 Dt1611如图1,在等边ABC中,D是BC的中点,P为AB 边上的一个动点,设AP=x,图1中线段DP的长为y,若表示y与x的函数关系的图象如图2所示,则ABC的面积为( ) A4BC12D12如图,某厂生产一种扇形折扇,OB=10cm,AB=20cm,其中裱花的部分是用纸糊的,若扇子完全打开摊平时纸面面积为 cm2,则扇形圆心角的度数为()A120B140C150D160二、填空题:(本大题共6个小题,每小题4分,共24分)13如图,角的一边在x轴上,另一
5、边为射线OP,点P(2,2),则tan=_14已知AB=AC,tanA=2,BC=5,则ABC的面积为_.15填在下列各图形中的三个数之间都有相同的规律,根据此规律,a的值是_16某校为了了解学生双休日参加社会实践活动的情况,随机抽取了100名学生进行调查,并绘成如图所示的频数分布直方图已知该校共有1000名学生,据此估计,该校双休日参加社会实践活动时间在22.5小时之间的学生数大约是全体学生数的_(填百分数)17如图所示是一组有规律的图案,第l个图案由4个基础图形组成,第2个图案由7个基础图形组成,第n(n是正整数)个图案中的基础图形个数为_ (用含n的式子表示)18因式分解:2m28n2=
6、 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)(1)解方程:x25x6=0;(2)解不等式组:20(6分)(1)计算:(2)解方程:x24x+2021(6分)先化简,再求值:,其中x为方程的根22(8分)有一个二次函数满足以下条件:函数图象与x轴的交点坐标分别为A(1,0),B(x1,y1)(点B在点A的右侧);对称轴是x3;该函数有最小值是1(1)请根据以上信息求出二次函数表达式;(1)将该函数图象xx1的部分图象向下翻折与原图象未翻折的部分组成图象“G”,平行于x轴的直线与图象“G”相交于点C(x3,y3)、D(x4,y4)、E(x5,y5)
7、(x3x4x5),结合画出的函数图象求x3+x4+x5的取值范围23(8分)如图,在ABC中,已知AB=AC,AB的垂直平分线交AB于点N,交AC于点M,连接MB若ABC=70,则NMA的度数是 度若AB=8cm,MBC的周长是14cm求BC的长度;若点P为直线MN上一点,请你直接写出PBC周长的最小值24(10分)如图,在正方形ABCD中,点E与点F分别在线段AC、BC上,且四边形DEFG是正方形(1)试探究线段AE与CG的关系,并说明理由(2)如图若将条件中的四边形ABCD与四边形DEFG由正方形改为矩形,AB=3,BC=1线段AE、CG在(1)中的关系仍然成立吗?若成立,请证明,若不成立
8、,请写出你认为正确的关系,并说明理由当CDE为等腰三角形时,求CG的长25(10分)为了提高服务质量,某宾馆决定对甲、乙两种套房进行星级提升,已知甲种套房提升费用比乙种套房提升费用少3万元,如果提升相同数量的套房,甲种套房费用为625万元,乙种套房费用为700万元(1)甲、乙两种套房每套提升费用各多少万元?(2)如果需要甲、乙两种套房共80套,市政府筹资金不少于2090万元,但不超过2096万元,且所筹资金全部用于甲、乙种套房星级提升,市政府对两种套房的提升有几种方案?哪一种方案的提升费用最少?(3)在(2)的条件下,根据市场调查,每套乙种套房的提升费用不会改变,每套甲种套房提升费用将会提高a
9、万元(a0),市政府如何确定方案才能使费用最少?26(12分)中华文明,源远流长;中华汉字,寓意深广为了传承中华民族优秀传统文化,我市某中学举行“汉字听写”比赛,赛后整理参赛学生的成绩,将学生的成绩分为A,B,C,D四个等级,并将结果绘制成如图所示的条形统计图和扇形统计图,但均不完整请你根据统计图解答下列问题:参加比赛的学生共有_名;在扇形统计图中,m的值为_,表示“D等级”的扇形的圆心角为_度;组委会决定从本次比赛获得A等级的学生中,选出2名去参加全市中学生“汉字听写”大赛已知A等级学生中男生有1名,请用列表法或画树状图法求出所选2名学生恰好是一名男生和一名女生的概率27(12分)如图,Rt
10、ABC,CABC,AC4,在AB边上取一点D,使ADBC,作AD的垂直平分线,交AC边于点F,交以AB为直径的O于G,H,设BCx(1)求证:四边形AGDH为菱形;(2)若EFy,求y关于x的函数关系式;(3)连结OF,CG若AOF为等腰三角形,求O的面积;若BC3,则CG+9_(直接写出答案)参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、A【解析】根据位似的性质得ABCABC,再根据相似三角形的性质进行求解即可得.【详解】由位似变换的性质可知,ABAB,ACAC,ABCABC,ABC与ABC的面积的比4:9,ABC与ABC
11、的相似比为2:3, ,故选A【点睛】本题考查了位似变换:如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心2、B【解析】根据平面直角坐标系中任意一点P(x,y),关于原点的对称点是(-x,-y)【详解】根据中心对称的性质,得点P(2,5)关于原点对称点的点的坐标是(2, 5).故选:B.【点睛】考查关于原点对称的点的坐标特征,平面直角坐标系中任意一点P(x,y),关于原点的对称点是(-x,-y)3、D【解析】根据众数的定义找出出现次数最多的数,再根据平均数的计算公式求出平均数即可【详解】4出现了2次,出现的次数最多,众数
12、是4;这组数据的平均数是:(4+8+4+6+3)5=5;故选D4、B【解析】连接AD,BD,由圆周角定理可得ABD20,ADB90,从而可求得BAD70,再由圆的内接四边形对角互补得到BCD=110.【详解】如下图,连接AD,BD,同弧所对的圆周角相等,ABD=AED20,AB为直径,ADB90,BAD90-20=70,BCD=180-70=110.故选B【点睛】本题考查圆中的角度计算,熟练运用圆周角定理和内接四边形的性质是关键.5、A【解析】AB的中垂线交BC于D,AC的中垂线交BC于E,DA=DB,EA=EC,则ADE的周长=AD+DE+AE=BD+DE+EC=BC=8,故选A6、D【解析
13、】解: ,3(x1)6=2(3x+1),故选D点睛:本题考查了等式的性质,解题的关键是正确理解等式的性质,本题属于基础题型7、B【解析】根据图形旋转的性质得AC=AC,ACA=90,B=ABC,从而得AAC=45,结合1=20,即可求解【详解】将RtABC绕直角项点C顺时针旋转90,得到A BC,AC=AC,ACA=90,B=ABC,AAC=45,1=20,BAC=45-20=25,ABC=90-25=65,B=65故选B【点睛】本题主要考查旋转的性质,等腰三角形和直角三角形的性质,掌握等腰三角形和直角三角形的性质定理,是解题的关键8、B【解析】解:根据题意可得:反比例函数处于二、四象限,则在
14、每个象限内为增函数,且当x0时y0,当x0时,y0,.9、C【解析】由折叠得到EB=EF,B=DFE,根据CE+EB=9,得到CE+EF=9,设EF=x,得到CE=9-x,在直角三角形CEF中,利用勾股定理列出关于x的方程,求出方程的解得到x的值,确定出EF与CE的长,由FD与BC平行,得到一对内错角相等,等量代换得到一对同位角相等,进而确定出EF与AB平行,由平行得比例,即可求出AB的长【详解】由折叠得到EB=EF,B=DFE,在RtECF中,设EF=EB=x,得到CE=BC-EB=9-x,根据勾股定理得:EF2=FC2+EC2,即x2=32+(9-x)2,解得:x=5,EF=EB=5,CE
15、=4,FDBC,DFE=FEC,FEC=B,EFAB,则AB=,故选C【点睛】此题考查了翻折变换(折叠问题),涉及的知识有:勾股定理,平行线的判定与性质,平行线分线段成比例,熟练掌握折叠的性质是解本题的关键10、B【解析】将一次函数解析式代入到反比例函数解析式中,整理得出x22x+16t=0,又因两函数图象有两个交点,且两交点横坐标的积为负数,根据根的判别式以及根与系数的关系可求解【详解】由题意可得:x+2=1-6tx,所以x22x+16t=0,两函数图象有两个交点,且两交点横坐标的积为负数,(-4(1-6t)01-6t0 解不等式组,得t16故选:B点睛:此题主要考查了反比例函数与一次函数的
16、交点问题,关键是利用两个函数的解析式构成方程,再利用一元二次方程的根与系数的关系求解.11、D【解析】分析:由图1、图2结合题意可知,当DPAB时,DP最短,由此可得DP最短=y最小=,这样如图3,过点P作PDAB于点P,连接AD,结合ABC是等边三角形和点D是BC边的中点进行分析解答即可.详解:由题意可知:当DPAB时,DP最短,由此可得DP最短=y最小=,如图3,过点P作PDAB于点P,连接AD,ABC是等边三角形,点D是BC边上的中点,ABC=60,ADBC,DPAB于点P,此时DP=,BD=,BC=2BD=4,AB=4,AD=ABsinB=4sin60=,SABC=ADBC=.故选D.
17、点睛:“读懂题意,知道当DPAB于点P时,DP最短=”是解答本题的关键.12、C【解析】根据扇形的面积公式列方程即可得到结论【详解】OB=10cm,AB=20cm,OA=OB+AB=30cm,设扇形圆心角的度数为,纸面面积为 cm2,=150,故选:C【点睛】本题考了扇形面积的计算的应用,解题的关键是熟练掌握扇形面积计算公式:扇形的面积= .二、填空题:(本大题共6个小题,每小题4分,共24分)13、 【解析】解:过P作PAx轴于点AP(2,),OA=2,PA=,tan=.故答案为点睛:本题考查了解直角三角形,正切的定义,坐标与图形的性质,熟记三角函数的定义是解题的关键14、【解析】作CDAB
18、,由tanA=2,设AD=x,CD=2x,根据勾股定理AC=x,则BD=,然后在RtCBD中BC2=BD2+CD2,即52=4x2+,解得x2=,则SABC=【详解】如图作CDAB,tanA=2,设AD=x,CD=2x,AC=x,BD=,在RtCBD中BC2=BD2+CD2,即52=4x2+,x2=,SABC=【点睛】此题主要考查三角函数的应用,解题的关键是根据题意作出辅助线进行求解.15、1【解析】寻找规律:上面是1,2 ,3,4,;左下是1,4=22,9=32,16=42,;右下是:从第二个图形开始,左下数字减上面数字差的平方:(42)2,(93)2,(164)2,a=(366)2=116
19、、【解析】用被抽查的100名学生中参加社会实践活动时间在22.5小时之间的学生除以抽查的学生总人数,即可得解【详解】由频数分布直方图知,22.5小时的人数为100(8+24+30+10)=28,则该校双休日参加社会实践活动时间在22.5小时之间的学生数大约是全体学生数的百分比为100%=28%故答案为:28%【点睛】本题考查了频数分布直方图以及用样本估计总体,利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题一般来说,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确17、3n+1【解析】试题分析:由图可知每个图案一次增加3个基本图形,第
20、一个图案有4个基本图形,则第n个图案的基础图形有4+3(n-1)=3n+1个考点:规律型18、2(m+2n)(m2n)【解析】试题分析:根据因式分解法的步骤,有公因式的首先提取公因式,可知首先提取系数的最大公约数2,进一步发现提公因式后,可以用平方差公式继续分解解:2m28n2,=2(m24n2),=2(m+2n)(m2n)考点:提公因式法与公式法的综合运用三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1)x1=6,x2=1;(2)1x1【解析】(1)先分解因式,即可得出两个一元一次方程,求出方程的解即可;(2)先求出不等式的解集,再求出不等式组的解集
21、即可【详解】(1)x25x6=0,(x6)(x+1)=0,x6=0,x+1=0,x1=6,x2=1;(2)解不等式得:x1,解不等式得:x1,不等式组的解集为1x1【点睛】本题考查了解一元一次不等式组和解一元二次方程,能把一元二次方程转化成一元一次方程是解(1)的关键,能根据不等式的解集找出不等式组的解集是解(2)的关键20、(1)-1;(2)x12+,x22【解析】(1)按照实数的运算法则依次计算即可;(2)利用配方法解方程【详解】(1)原式21+21;(2)x24x+20,x24x2,x24x+42+4,即(x2)22,x2,x12+,x22【点睛】此题考查计算能力,(1)考查实数的计算,
22、正确掌握绝对值的定义,零次幂的定义,特殊角度的三角函数值是解题的关键;(2)是解一元二次方程,能根据方程的特点选择适合的解法是解题的关键.21、1【解析】先将除式括号里面的通分后,将除法转换成乘法,约分化简然后解一元二次方程,根据分式有意义的条件选择合适的x值,代入求值【详解】解:原式解得,时,无意义,取当时,原式22、(1)y=(x3)11;(1)11x3+x4+x59+1【解析】(1)利用二次函数解析式的顶点式求得结果即可;(1)由已知条件可知直线与图象“G”要有3个交点分类讨论:分别求得平行于x轴的直线与图象“G”有1个交点、1个交点时x3x4x5的取值范围,易得直线与图象“G”要有3个
23、交点时x3x4x5的取值范围【详解】(1)有上述信息可知该函数图象的顶点坐标为:(3,1)设二次函数表达式为:y=a(x3)11该图象过A(1,0)0=a(13)11,解得a=表达式为y=(x3)11(1)如图所示:由已知条件可知直线与图形“G”要有三个交点1当直线与x轴重合时,有1个交点,由二次函数的轴对称性可求x3+x4=6,x3+x4+x511,当直线过y=(x3)11的图象顶点时,有1个交点,由翻折可以得到翻折后的函数图象为y=(x3)1+1,令(x3)1+1=1时,解得x=3+1或x=31(舍去)x3+x4+x59+1综上所述11x3+x4+x59+1【点睛】考查了二次函数综合题,涉
24、及到待定系数法求二次函数解析式,抛物线的对称性质,二次函数图象的几何变换,直线与抛物线的交点等知识点,综合性较强,需要注意“数形结合”数学思想的应用23、(1)50;(2)6;1 【解析】试题分析:(1)根据等腰三角形的性质和线段垂直平分线的性质即可得到结论;(2)根据线段垂直平分线上的点到线段两端点的距离相等的性质可得AM=BM,然后求出MBC的周长=AC+BC,再代入数据进行计算即可得解;当点P与M重合时,PBC周长的值最小,于是得到结论试题解析:解:(1)AB=AC,C=ABC=70,A=40AB的垂直平分线交AB于点N,ANM=90,NMA=50故答案为50;(2)MN是AB的垂直平分
25、线,AM=BM,MBC的周长=BM+CM+BC=AM+CM+BC=AC+BCAB=8,MBC的周长是1,BC=18=6;当点P与M重合时,PBC周长的值最小,理由:PB+PC=PA+PC,PA+PCAC,P与M重合时,PA+PC=AC,此时PB+PC最小,PBC周长的最小值=AC+BC=8+6=124、(1)AE=CG,AECG,理由见解析;(2)位置关系保持不变,数量关系变为;理由见解析;当CDE为等腰三角形时,CG的长为或或【解析】试题分析:证明即可得出结论.位置关系保持不变,数量关系变为证明根据相似的性质即可得出.分成三种情况讨论即可.试题解析:(1) 理由是:如图1,四边形EFGD是正
26、方形, 四边形ABCD是正方形, 即 (2)位置关系保持不变,数量关系变为 理由是:如图2,连接EG、DF交于点O,连接OC,四边形EFGD是矩形, Rt中,OG=OF,Rt中, D、E、F、C、G在以点O为圆心的圆上, DF为的直径, EG也是的直径,ECG=90,即 由知:设 分三种情况:(i)当时,如图3,过E作于H,则EHAD, 由勾股定理得: (ii)当时,如图1,过D作于H, (iii)当时,如图5, 综上所述,当为等腰三角形时,CG的长为或或点睛:两组角对应,两三角形相似.25、(1)甲:25万元;乙:28万元;(2)三种方案;甲种套房提升50套,乙种套房提升30套费用最少;(3
27、)当a=3时,三种方案的费用一样,都是2240万元;当a3时,取m=48时费用最省;当0a3时,取m=50时费用最省.【解析】试题分析:(1)设甲种套房每套提升费用为x万元,根据题意建立方程求出其解即可;(2)设甲种套房提升m套,那么乙种套房提升(80-m)套,根据条件建立不等式组求出其解就可以求出提升方案,再表示出总费用与m之间的函数关系式,根据一次函数的性质就可以求出结论;(3)根据(2)表示出W与m之间的关系式,由一次函数的性质分类讨论就可以得出结论(1)设甲种套房每套提升费用为x万元,依题意,得625x=700 x+3解得:x=25经检验:x=25符合题意,x+3=28;答:甲,乙两种
28、套房每套提升费用分别为25万元,28万元(2)设甲种套房提升套,那么乙种套房提升(m-48)套,依题意,得解得:48m50即m=48或49或50,所以有三种方案分别是:方案一:甲种套房提升48套,乙种套房提升32套方案二:甲种套房提升49套,乙种套房提升1套方案三:甲种套房提升50套,乙种套房提升30套设提升两种套房所需要的费用为W.所以当时,费用最少,即第三种方案费用最少.(3)在(2)的基础上有:当a=3时,三种方案的费用一样,都是2240万元.当a3时,取m=48时费用W最省.当0a3时,取m=50时费用最省.考点: 1.一次函数的应用;2.分式方程的应用;3.一元一次不等式组的应用26、(1)20;(2)40,1;(3)【解析】试题分析:
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度年福建省高校教师资格证之高等教育心理学自我检测试卷A卷附答案
- 2024年度山西省高校教师资格证之高等教育法规通关提分题库及完整答案
- 2024年合成胶粘剂项目投资申请报告代可行性研究报告
- 2024年私人损害赔偿自愿协议
- 高校食品专业实验室安全管理探究
- 新形势下企业经济管理创新思路探究
- 2024年商业楼宇化粪池建造协议范例
- 2024年加工区租赁协议
- 2024年度工程地质勘察协议范本
- 2024届安徽省安大附中高三下学期第一次诊断测试数学试题
- 专题四 植物的三大生理作用
- 养老院老人入院风险告知书4篇
- 小马过河托福考试阅读真经1200单词
- 2022年北京科技大学辅导员招聘考试试题及答案解析
- 医疗医院康养项目商业地产整合营销方案
- 安医大生殖医学课件10胚胎实验室的质量控制与管理
- 学校水电检查记录表
- 最新版净身出户离婚协议书范本
- 九种体质课件
- 部编版语文六年级上册《口语交际》专项练习
- 自行车小故事动态图中文版骑车小故事中文版
评论
0/150
提交评论