江苏省无锡新区五校联考2021-2022学年十校联考最后数学试题含解析_第1页
江苏省无锡新区五校联考2021-2022学年十校联考最后数学试题含解析_第2页
江苏省无锡新区五校联考2021-2022学年十校联考最后数学试题含解析_第3页
江苏省无锡新区五校联考2021-2022学年十校联考最后数学试题含解析_第4页
江苏省无锡新区五校联考2021-2022学年十校联考最后数学试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022中考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1对于两组数据A,B,如果sA2sB2,且,则()A这两组数据的波动相同B数据B的波动小一些C它们的平均水平不相同D数据A的波动小一些2如图,在平行四边形ABCD中,都不一定 成立的是()AO=CO;ACBD;ADBC;CAB=CADA和B和C和D和3若x,y的值均扩大为原来的3倍,则

2、下列分式的值保持不变的是()ABCD4如图,正方形ABCD内接于圆O,AB4,则图中阴影部分的面积是( )ABCD5实数a,b在数轴上的对应点的位置如图所示,则正确的结论是( )Aa2Ba3CabDab6如图,在中,边上的高是( )ABCD7甲、乙两盒中分别放入编号为1、2、3、4的形状相同的4个小球,从甲盒中任意摸出一球,再从乙盒中任意摸出一球,将两球编号数相加得到一个数,则得到数( )的概率最大A3B4C5D68据史料记载,雎水太平桥建于清嘉庆年间,已有200余年历史桥身为一巨型单孔圆弧,既没有用钢筋,也没有用水泥,全部由石块砌成,犹如一道彩虹横卧河面上,桥拱半径OC为13m,河面宽AB为

3、24m,则桥高CD为( )A15mB17mC18mD20m9如图,CD是O的弦,O是圆心,把O的劣弧沿着CD对折,A是对折后劣弧上的一点,CAD=100,则B的度数是() A100B80C60D5010将直线y=x+a的图象向右平移2个单位后经过点A(3,3),则a的值为()A4 B4 C2 D2二、填空题(共7小题,每小题3分,满分21分)11已知甲、乙两组数据的折线图如图,设甲、乙两组数据的方差分别为S甲2、S乙2,则S甲2_S乙2(填“”、“=”、“”)12化简的结果为_13如图,等边三角形AOB的顶点A的坐标为(4,0),顶点B在反比例函数(x0)的图象上,则k= 14小球在如图所示的

4、地板上自由地滚动,并随机地停留在某块方砖上,那么小球最终停留在黑色区域的概率是_15若-2amb4与5a2bn+7是同类项,则m+n= 16如图, O是ABC的外接圆,AOB=70,AB=AC,则ABC=_.17在一次射击比赛中,某运动员前7次射击共中62环,如果他要打破89环(10次射击)的记录,那么第8次射击他至少要打出_环的成绩三、解答题(共7小题,满分69分)18(10分)如图,正方形ABCD的边长为4,点E,F分别在边AB,AD上,且ECF45,CF的延长线交BA的延长线于点G,CE的延长线交DA的延长线于点H,连接AC,EF,GH填空:AHC ACG;(填“”或“”或“”)线段AC

5、,AG,AH什么关系?请说明理由;设AEm,AGH的面积S有变化吗?如果变化请求出S与m的函数关系式;如果不变化,请求出定值请直接写出使CGH是等腰三角形的m值19(5分)如图,以D为顶点的抛物线y=x2+bx+c交x轴于A、B两点,交y轴于点C,直线BC的表达式为y=x+1求抛物线的表达式;在直线BC上有一点P,使PO+PA的值最小,求点P的坐标;在x轴上是否存在一点Q,使得以A、C、Q为顶点的三角形与BCD相似?若存在,请求出点Q的坐标;若不存在,请说明理由20(8分)计算:|-2|+21cos61(1)121(10分)如图,在一个可以自由转动的转盘中,指针位置固定,三个扇形的面积都相等,

6、且分别标有数字2,3、1(1)小明转动转盘一次,当转盘停止转动时,指针所指扇形中的数字是奇数的概率为 ;(2)小明先转动转盘一次,当转盘停止转动时,记录下指针所指扇形中的数字;接着再转动转盘一次,当转盘停止转动时,再次记录下指针所指扇形中的数字,求这两个数字之和是3的倍数的概率(用画树状图或列表等方法求解)22(10分)如图是一副扑克牌中的四张牌,将它们正面向下冼均匀,从中任意抽取两张牌,用画树状图(或列表)的方法,求抽出的两张牌牌面上的数字之和都是偶数的概率23(12分)如图1,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DFBE,求证:CECF;如图2,在正方形ABCD中,

7、E是AB上一点,G是AD上一点,如果GCE45,请你利用(1)的结论证明:GEBEGD;运用(1)(2)解答中所积累的经验和知识,完成下题:如图3,在直角梯形ABCD中,ADBC(BCAD),B90,ABBC,E是AB上一点,且DCE45,BE4,DE=10, 求直角梯形ABCD的面积24(14分)已知二次函数y=x2-4x-5,与y轴的交点为P,与x轴交于A、B两点(点B在点A的右侧)(1)当y=0时,求x的值(2)点M(6,m)在二次函数y=x2-4x-5的图像上,设直线MP与x轴交于点C,求cotMCB的值参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【解析】

8、试题解析:方差越小,波动越小. 数据B的波动小一些.故选B.点睛:本题考查方差的意义方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定2、D【解析】四边形ABCD是平行四边形,AO=CO,故成立;ADBC,故成立;利用排除法可得与不一定成立,当四边形是菱形时,和成立故选D.3、D【解析】根据分式的基本性质,x,y的值均扩大为原来的3倍,求出每个式子的结果,看结果等于原式的即是答案【详解】根据分式的基本性质,可知若x,y的值均扩大为原来的3倍,A、,错误;B、,

9、错误;C、,错误;D、,正确;故选D【点睛】本题考查的是分式的基本性质,即分子分母同乘以一个不为0的数,分式的值不变此题比较简单,但计算时一定要细心4、B【解析】连接OA、OB,利用正方形的性质得出OA=ABcos45=2,根据阴影部分的面积=SO-S正方形ABCD列式计算可得【详解】解:连接OA、OB,四边形ABCD是正方形,AOB=90,OAB=45,OA=ABcos45=4=2,所以阴影部分的面积=SO-S正方形ABCD=(2)2-44=8-1故选B【点睛】本题主要考查扇形的面积计算,解题的关键是熟练掌握正方形的性质和圆的面积公式5、D【解析】试题分析:A如图所示:3a2,故此选项错误;

10、B如图所示:3a2,故此选项错误;C如图所示:1b2,则2b1,又3a2,故ab,故此选项错误;D由选项C可得,此选项正确故选D考点:实数与数轴6、D【解析】根据三角形的高线的定义解答【详解】根据高的定义,AF为ABC中BC边上的高故选D【点睛】本题考查了三角形的高的定义,熟记概念是解题的关键7、C【解析】解:甲和乙盒中1个小球任意摸出一球编号为1、2、3、1的概率各为,其中得到的编号相加后得到的值为2,3,1,5,6,7,8和为2的只有1+1;和为3的有1+2;2+1;和为1的有1+3;2+2;3+1;和为5的有1+1;2+3;3+2;1+1;和为6的有2+1;1+2;和为7的有3+1;1+

11、3;和为8的有1+1故p(5)最大,故选C8、C【解析】连结OA,如图所示: CDAB,AD=BD=AB=12m.在RtOAD中,OA=13,OD=,所以CD=OC+OD=13+5=18m.故选C.9、B【解析】试题分析:如图,翻折ACD,点A落在A处,可知A=A=100,然后由圆内接四边形可知A+B=180,解得B=80.故选:B10、A【解析】直接根据“左加右减”的原则求出平移后的解析式,然后把A(3,3)代入即可求出a的值.【详解】由“右加左减”的原则可知,将直线y=-x+b向右平移2个单位所得直线的解析式为:y=-x+b+2,把A(3,3)代入,得3=-3+b+2,解得b=4.故选A.

12、【点睛】本题考查了一次函数图象的平移,一次函数图象的平移规律是:y=kx+b向左平移m个单位,是y=k(x+m)+b, 向右平移m个单位是y=k(x-m)+b,即左右平移时,自变量x左加右减;y=kx+b向上平移n个单位,是y=kx+b+n, 向下平移n个单位是y=kx+b-n,即上下平移时,b的值上加下减.二、填空题(共7小题,每小题3分,满分21分)11、【解析】要比较甲、乙方差的大小,就需要求出甲、乙的方差;首先根据折线统计图结合根据平均数的计算公式求出这两组数据的平均数;接下来根据方差的公式求出甲、乙两个样本的方差,然后比较即可解答题目.【详解】甲组的平均数为:=4,S甲2=(3-4)

13、2+(6-4)2+(2-4)2+(6-4)2+(4-4)2+(3-4)2=,乙组的平均数为: =4,S乙2=(4-4)2+(3-4)2+(5-4)2+(3-4)2+(4-4)2+(5-4)2=,S甲2S乙2.故答案为:.【点睛】本题考查的知识点是方差,算术平均数,折线统计图,解题的关键是熟练的掌握方差,算术平均数,折线统计图.12、+1【解析】利用积的乘方得到原式(1)(+1)2017(+1),然后利用平方差公式计算【详解】原式(1)(+1)2017(+1)(21)2017(+1)+1故答案为:+1【点睛】本题考查了二次根式的混合运算,在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式

14、的性质,选择恰当的解题途径,往往能事半功倍13、-4.【解析】过点B作BDx轴于点D,因为AOB是等边三角形,点A的坐标为(-4,0)所AOB=60,根据锐角三角函数的定义求出BD及OD的长,可得出B点坐标,进而得出反比例函数的解析式.【详解】过点B作BDx轴于点D,AOB是等边三角形,点A的坐标为(4,0),AOB=60,OB=OA=AB=4,OD= OB=2,BD=OBsin60=4=2,B(2,2 ),k=22 =4【点睛】本题考查了反比例函数图象上点的坐标特点、等边三角形的性质、解直角三角函数等知识,难度适中14、29【解析】试题分析:根据题意和图示,可知所有的等可能性为18种,然后可

15、知落在黑色区域的可能有4种,因此可求得小球停留在黑色区域的概率为:418=29.15、-1【解析】试题分析:根据同类项是字母相同且相同字母的指数也相同,可得方程组,根据解方程组,可得m、n的值,根据有理数的加法,可得答案试题解析:由-2amb4与5a2bn+7是同类项,得m=2n+7=4,解得m=2n=-3m+n=-1考点:同类项16、35【解析】试题分析:AOB=70,C=AOB=35AB=AC,ABC=C=35故答案为35考点:圆周角定理17、8【解析】为了使第8次的环数最少,可使后面的2次射击都达到最高环数,即10环.设第8次射击环数为x环,根据题意列出一元一次不等式62+x+21089

16、解之,得x7x表示环数,故x为正整数且x7,则x的最小值为8即第8次至少应打8环.点睛:本题考查的是一元一次不等式的应用.解决此类问题的关键是在理解题意的基础上,建立与之相应的解决问题的“数学模型”不等式,再由不等式的相关知识确定问题的答案.三、解答题(共7小题,满分69分)18、(1)=;(2)结论:AC2AGAH理由见解析;(3)AGH的面积不变m的值为或2或84.【解析】(1)证明DAC=AHC+ACH=43,ACH+ACG=43,即可推出AHC=ACG;(2)结论:AC2=AGAH只要证明AHCACG即可解决问题;(3)AGH的面积不变理由三角形的面积公式计算即可;分三种情形分别求解即

17、可解决问题.【详解】(1)四边形ABCD是正方形,ABCBCDDA4,DDAB90DACBAC43,AC,DACAHC+ACH43,ACH+ACG43,AHCACG故答案为(2)结论:AC2AGAH理由:AHCACG,CAHCAG133,AHCACG,AC2AGAH(3)AGH的面积不变理由:SAGHAHAGAC2(4)21AGH的面积为1如图1中,当GCGH时,易证AHGBGC,可得AGBC4,AHBG8,BCAH,,AEAB如图2中,当CHHG时,易证AHBC4,BCAH,1,AEBE2如图3中,当CGCH时,易证ECBDCF22.3在BC上取一点M,使得BMBE,BMEBEM43,BME

18、MCE+MEC,MCEMEC22.3,CMEM,设BMBEm,则CMEMm,m+m4,m4(1),AE44(1)84,综上所述,满足条件的m的值为或2或84【点睛】本题属于四边形综合题,考查了正方形的性质,全等三角形的判定和性质,相似三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题19、(1)y=x2+2x+1;(2)P ( ,);(1)当Q的坐标为(0,0)或(9,0)时,以A、C、Q为顶点的三角形与BCD相似【解析】(1)先求得点B和点C的坐标,然后将点B和点C的坐标代入抛物线的解析式得到关于b、c的方程,从而可求得b、c的值;(2)作点O关于BC的对称点O,则O(1,1),

19、则OP+AP的最小值为AO的长,然后求得AO的解析式,最后可求得点P的坐标;(1)先求得点D的坐标,然后求得CD、BC、BD的长,依据勾股定理的逆定理证明BCD为直角三角形,然后分为AQCDCB和ACQDCB两种情况求解即可【详解】(1)把x=0代入y=x+1,得:y=1,C(0,1)把y=0代入y=x+1得:x=1,B(1,0),A(1,0).将C(0,1)、B(1,0)代入y=x2+bx+c得: ,解得b=2,c=1抛物线的解析式为y=x2+2x+1(2)如图所示:作点O关于BC的对称点O,则O(1,1)O与O关于BC对称,PO=POOP+AP=OP+APAOOP+AP的最小值=OA=2O

20、A的方程为y=P点满足解得:所以P ( ,)(1)y=x2+2x+1=(x1)2+4,D(1,4)又C(0,1,B(1,0),CD=,BC=1,DB=2CD2+CB2=BD2,DCB=90A(1,0),C(0,1),OA=1,CO=1又AOC=DCB=90,AOCDCB当Q的坐标为(0,0)时,AQCDCB如图所示:连接AC,过点C作CQAC,交x轴与点QACQ为直角三角形,COAQ,ACQAOC又AOCDCB,ACQDCB,即,解得:AQ=3Q(9,0)综上所述,当Q的坐标为(0,0)或(9,0)时,以A、C、Q为顶点的三角形与BCD相似【点睛】本题考查了二次函数的综合应用,解题的关键是掌握

21、待定系数法求二次函数的解析式、轴对称图形的性质、相似三角形的性质和判定,分类讨论的思想20、1- 【解析】利用零指数幂和绝对值的性质、特殊角的三角函数值、负指数次幂的性质进行计算即可【详解】解:原式【点睛】本题考查了零指数幂和绝对值的性质、特殊角的三角函数值、负指数次幂的性质,熟练掌握性质及定义是解题的关键21、(1);(2)这两个数字之和是3的倍数的概率为【解析】(1)在标有数字1、2、3的3个转盘中,奇数的有1、3这2个,根据概率公式可得;(2)用列表法列出所有情况,再计算概率.【详解】解:(1)在标有数字1、2、3的3个转盘中,奇数的有1、3这2个,指针所指扇形中的数字是奇数的概率为,故

22、答案为;(2)列表如下:1231(1,1)(2,1)(3,1)2(1,2)(2,2)(3,2)3(1,3)(2,3)(3,3)由表可知,所有等可能的情况数为9种,其中这两个数字之和是3的倍数的有3种,所以这两个数字之和是3的倍数的概率为=【点睛】本题考核知识点:求概率. 解题关键点:列出所有情况,熟记概率公式.22、【解析】根据列表法先画出列表,再求概率.【详解】解:列表如下:23562(2,3)(2,5)(2,6)3(3,2)(3,5)(3,6)5(5,2)(5,3)(5,6)6(6,2)(6,3)(6,5)由表可知共有12种等可能结果,其中数字之和为偶数的有4种,所以P(数字之和都是偶数)【点睛】此题重点考查学生对概率的应用,掌握列表法是解题的关键.23、(1)、(2)证明见解析(3)28【解析】试题分析:(1)根据正方形的性质,可直接证明CBECDF,从而得出CE=CF;(2)延长AD至F,使DF=BE,连接CF,根据(1)知BCE=DCF,即可证明ECF=BCD=90,根据GCE=45,得

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论