版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、1会从实际情境中抽象出二元一次不等式组会从实际情境中抽象出二元一次不等式组2了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组3会从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决会从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决第第2 2课时课时 二元一次不等式组与简单的线性规划问题二元一次不等式组与简单的线性规划问题【命题预测【命题预测】 1线性规划是新增加的内容,在高考中不会单独出现,往往会蕴含在与其他学科线性规划是新增加的内容,在高考中不会单独出现,往往会蕴含在与其他学科有关的问题之中,大多都是
2、容易题,题目的形式多种多样,可以是填空题,也有关的问题之中,大多都是容易题,题目的形式多种多样,可以是填空题,也可以是解答题可以是解答题2高考主要考查如何表示二元一次不等式组的平面区域,并且利用平面区域求最高考主要考查如何表示二元一次不等式组的平面区域,并且利用平面区域求最值和解决实际问题值和解决实际问题【应试对策【应试对策】 1用图解法解决线性规划问题,关键是分析题目的已知条件,找出约束条件和目用图解法解决线性规划问题,关键是分析题目的已知条件,找出约束条件和目标函数,可先将题目中的数量分类,列出表格,理清头绪,然后列出不等式组标函数,可先将题目中的数量分类,列出表格,理清头绪,然后列出不等
3、式组(方程组方程组)寻求约束条件,并就题目所述找到目标函数寻求约束条件,并就题目所述找到目标函数2如果可行域是一个多边形,那么一般在其顶点处使目标函数取得最大值或最小如果可行域是一个多边形,那么一般在其顶点处使目标函数取得最大值或最小值到底是哪个顶点为最优解,可有两种确定方法:一是将目标函数的直线平行值到底是哪个顶点为最优解,可有两种确定方法:一是将目标函数的直线平行移动,最先通过或最后通过的顶点便是;另一种方法是利用围成可行域的直线的移动,最先通过或最后通过的顶点便是;另一种方法是利用围成可行域的直线的斜率来判断特别地,当表示线性目标函数的直线与可行域的某条边平行时,其斜率来判断特别地,当表
4、示线性目标函数的直线与可行域的某条边平行时,其最优解可能有无数多个最优解可能有无数多个3若实际问题要求的最优解是整数解,而我们利用图解法得到的解为非整数解若实际问题要求的最优解是整数解,而我们利用图解法得到的解为非整数解(近近似解似解),此时应当作适当的调整,其方法是以与线性目标函数的直线的距离为依,此时应当作适当的调整,其方法是以与线性目标函数的直线的距离为依据,在直线的附近寻求与此直线距离最近的整点,不要在用图解法所得到的近据,在直线的附近寻求与此直线距离最近的整点,不要在用图解法所得到的近似解附近寻找如果可行域中的整点数目不多,可采用逐个检验的办法确定似解附近寻找如果可行域中的整点数目不
5、多,可采用逐个检验的办法确定4由于解线性规划问题的关键步骤是在图形上完成的,所以,作图时应尽可能准由于解线性规划问题的关键步骤是在图形上完成的,所以,作图时应尽可能准确,图上操作要尽可能规范但考虑到作图毕竟还是会有误差,假若图上的最确,图上操作要尽可能规范但考虑到作图毕竟还是会有误差,假若图上的最优点并不明显时,不妨将几个有可能是最优点的坐标都求出来,然后逐一检查,优点并不明显时,不妨将几个有可能是最优点的坐标都求出来,然后逐一检查,从而作出结论线性规划是利用数形结合法解决实际问题和数学问题的最优解从而作出结论线性规划是利用数形结合法解决实际问题和数学问题的最优解的一种方法,主要是借助坐标平面
6、内的直线以及直线所围成的平面区域求的一种方法,主要是借助坐标平面内的直线以及直线所围成的平面区域求解因此,准确、规范的作图是保证解题结果准确的重要手段解因此,准确、规范的作图是保证解题结果准确的重要手段【知识拓展【知识拓展】 1解线性规划应用题的步骤:解线性规划应用题的步骤:(1)转化转化设元,写出约束条件和目标函数,从而将实际问题转化为数学上的线性设元,写出约束条件和目标函数,从而将实际问题转化为数学上的线性规划问题规划问题(2)求解求解解这个纯数学的线性规划问题解这个纯数学的线性规划问题求解过程:求解过程: 作图作图画出约束条件所确定的平面区域和目标函数所表示的平面直线系中的任画出约束条件
7、所确定的平面区域和目标函数所表示的平面直线系中的任 意一条直线意一条直线l. 平移平移将将l平行移动,以确定最优解所对应的点的位置平行移动,以确定最优解所对应的点的位置 求值求值解有关方程组求出最优解的坐标,再代入目标函数,求出目标函数的解有关方程组求出最优解的坐标,再代入目标函数,求出目标函数的 最值最值 (3)作答作答就应用题提出的问题作出回答就应用题提出的问题作出回答1二元一次不等式二元一次不等式(组组)表示的平面区域表示的平面区域(1)二元一次不等式表示平面区域二元一次不等式表示平面区域一般地,直线一般地,直线yk kxb把平面分成两个区域,把平面分成两个区域,yk kxb表示直线上方
8、的平面区域,表示直线上方的平面区域,yk kxb表示直线表示直线 的平面区域的平面区域(2)选点法确定二元一次不等式表示的平面区域选点法确定二元一次不等式表示的平面区域任选一个任选一个的点;的点;检验它的坐标是否满足所给的不等式;检验它的坐标是否满足所给的不等式;下方下方不在直线上不在直线上若适合,则该点若适合,则该点 即为不等式所表示的平面区域,否则,即为不等式所表示的平面区域,否则,直线的另一侧为不等式所表示的平面区域直线的另一侧为不等式所表示的平面区域(3)二元一次不等式组表示平面区域二元一次不等式组表示平面区域不等式组中各个不等式表示平面区域的不等式组中各个不等式表示平面区域的 部分部
9、分思考:思考:不等式不等式yk kxb与与yk kxb所表示的平面区域有何不同?所表示的平面区域有何不同?提示:提示:不等式不等式yk kxb表示的平面区域包括边界直线,此时边界直线画成实线,而表示的平面区域包括边界直线,此时边界直线画成实线,而yk kxb表示的平面区域不包括边界直线,此时边界直线画成虚线表示的平面区域不包括边界直线,此时边界直线画成虚线所在的一侧所在的一侧公共公共2线性规划中的基本概念线性规划中的基本概念名称名称定义定义约束条件约束条件变量变量x,y满足的一次不等式组满足的一次不等式组目标函数目标函数欲求最大值或最小值所涉及的变量欲求最大值或最小值所涉及的变量x,y的线性函
10、数的线性函数可行域可行域 条件所表示的平面区域称为可行域条件所表示的平面区域称为可行域最优解最优解使目标函数取得使目标函数取得 或或 的可行解的可行解线性规划问题线性规划问题在线性约束条件下,求线性目标函数的在线性约束条件下,求线性目标函数的 或或 问题问题最大值最大值最小值最小值最大值最大值最小值最小值约束约束1不等式不等式x3y70表示直线表示直线x3y70_方的平面区域方的平面区域 答案:答案:上上2. 如右图,阴影部分表示的区域可用如右图,阴影部分表示的区域可用 二元一次不等式组表示为二元一次不等式组表示为. 答案答案:3点点(3,1)和和(4,6)在直线在直线3x2ya0的两侧,则的
11、两侧,则a的取值范围是的取值范围是_ 解析:解析:由题意知由题意知(92a)(1212a)0,即,即(a7)(a24)0 7a24. 答案:答案:7a244(盐城市高三第一次调研考试盐城市高三第一次调研考试)设不等式组设不等式组 , 所表示的区域为所表示的区域为A,现在区域,现在区域A中任意丢进一个粒子,则该粒子落在直线中任意丢进一个粒子,则该粒子落在直线 y x上方的概率为上方的概率为_ 解析:解析:由题知,区域由题知,区域A的面积为的面积为4,又因为区域,又因为区域A内在直线内在直线y x上方区域上方区域 的面积为的面积为3,所以所求概率为,所以所求概率为 . 答案:答案:5(2010江苏
12、省东台中学高三数学诊断性试卷江苏省东台中学高三数学诊断性试卷)已知变量已知变量x,y满足约束条件满足约束条件 . 若目标函数若目标函数zaxy(其中其中a0)仅在点仅在点(3,0)处取得最大处取得最大 值,则值,则a的取值范围是的取值范围是_ 答案:答案:二元一次不等式组表示平面区域的判断二元一次不等式组表示平面区域的判断(1)直线定界,特殊点定域:注意不等式中不等号有无等号,无等号时直线画成虚直线定界,特殊点定域:注意不等式中不等号有无等号,无等号时直线画成虚线,有等号时直线画成实线若直线不过原点,特殊点常选取原点线,有等号时直线画成实线若直线不过原点,特殊点常选取原点(2)同号上,异号下:
13、即当同号上,异号下:即当B(AxByC)0时,区域为直线时,区域为直线AxByC0的上方,的上方,当当B(AxByC)0时,区域为直线时,区域为直线AxByC0的下方的下方【例【例1】 如图所示如图所示,试用关于试用关于x,y的不等式组表示图中阴影部分所示的平的不等式组表示图中阴影部分所示的平面区域面区域 思路点拨:思路点拨:要写出对应图形如何用相应的不等式表示要写出对应图形如何用相应的不等式表示出来,只要在对应的平面区域中任取一个点,将其坐出来,只要在对应的平面区域中任取一个点,将其坐标分别代入对应的直线的一般式方程的左边,再判断标分别代入对应的直线的一般式方程的左边,再判断其符号即可写出相
14、应的不等式组其符号即可写出相应的不等式组解:解:由所给的图形可以看到,点由所给的图形可以看到,点(-1,0)在相应的平面区域内,在相应的平面区域内,把点把点(-1,0)的坐标分别代入的坐标分别代入x-y,x+2y-4,x+2中,中,使得使得x-y0,x+2y-40,同时注意相应的平面区域是否同时注意相应的平面区域是否包括边界在内,故图中阴影部分所示的平面区域用不等式组表示为包括边界在内,故图中阴影部分所示的平面区域用不等式组表示为 变式变式1:(2010南京市第九中学调研测试南京市第九中学调研测试)不等式组不等式组所表示的平面所表示的平面 区域的面积等于区域的面积等于_解析:解析:画出平面区域
15、如图,由画出平面区域如图,由得得x=1,在在x+3y=4中令中令x=0得得y= ,在在3x+y=4中中令令x=0得得y=4.平面区域的面积为平面区域的面积为 .答案:答案:1在可行域内求目标函数的最值,必须先准确地作出可行域,再作出目标函数在可行域内求目标函数的最值,必须先准确地作出可行域,再作出目标函数对应的直线,据题意确定取得最优解的点,进而求出目标函数的最值对应的直线,据题意确定取得最优解的点,进而求出目标函数的最值2最优解的确定方法最优解的确定方法线性目标函数线性目标函数zaxby取最大值时的最优解与取最大值时的最优解与b的正负有关,当的正负有关,当b0时,最优时,最优解是将直线解是将
16、直线axby0在可行域内向上方平移到端点在可行域内向上方平移到端点(一般是两直线交点一般是两直线交点)的位置的位置得到的;当得到的;当b0时,则是向下方平移时,则是向下方平移【例【例2】 已知已知x,y满足不等式组满足不等式组 试求试求z300 x900y取得最大值时取得最大值时 的坐标的坐标,及相应的及相应的z的最大值的最大值思路点拨:思路点拨:先画出不等式组对应的平面区域,然后将直线先画出不等式组对应的平面区域,然后将直线300 x900y0平移,观平移,观察对应直线经过该平面区域的什么点时,在横察对应直线经过该平面区域的什么点时,在横(或纵或纵)轴上的截距最轴上的截距最大,同时注大,同时
17、注意判定对应的点的坐标是否均为整数,否则应适当地进行调整,从而得出结论意判定对应的点的坐标是否均为整数,否则应适当地进行调整,从而得出结论解解:如如图所示平面区域图所示平面区域AOBC,其中点其中点A(0,125),点点B(150,0),点,点C的坐标由方程组的坐标由方程组 得得C .令令t=300 x+900y,即即y=,欲求欲求z=300 x+900y的最大值,即转化为的最大值,即转化为求截距求截距 的最大值,从而可求的最大值,从而可求t的最大值,因直线的最大值,因直线y=与直线与直线y=- x平行,故作平行,故作y=- x的平行线,可知过点的平行线,可知过点A(0,125)时,对应的直线
18、的截距最大,所以,此时在时,对应的直线的截距最大,所以,此时在A处使处使z取最大值取最大值, =3000+900125=112 500.变式变式2:(南京市高三调研测试南京市高三调研测试)已知变量已知变量x,y满足满足 ,则则z2xy的最大值是的最大值是_解析:解析:在平面直角坐标系中作出如图中阴影部分所示的可行域在平面直角坐标系中作出如图中阴影部分所示的可行域, 在可行域中平行移动直线在可行域中平行移动直线z=2x+y可知在可知在B处取得取大值处取得取大值,又又B(3,3),所以所以 =23+3=9.答案:答案:9解决线性规划实际应用题的一般步骤:解决线性规划实际应用题的一般步骤:(1)认真
19、审题分析,设出未知数,写出线性约束条件和目标函数认真审题分析,设出未知数,写出线性约束条件和目标函数(2)作出可行域作出可行域(3)作出目标函数值为零时对应的直线作出目标函数值为零时对应的直线l.(4)在可行域内平行移动直线在可行域内平行移动直线l,从图中能判定问题有唯一最优解,或是有无,从图中能判定问题有唯一最优解,或是有无穷最优解或无最优解穷最优解或无最优解(5)求出最优解,从而得到目标函数的最值求出最优解,从而得到目标函数的最值【例【例3】制定投资计划时,不仅要考虑可能获得的盈利,而且要考虑可能出现的亏制定投资计划时,不仅要考虑可能获得的盈利,而且要考虑可能出现的亏损某投资人打算投资甲、
20、乙两个项目,根据预测,甲、乙项目可能的最大盈损某投资人打算投资甲、乙两个项目,根据预测,甲、乙项目可能的最大盈利率分别为利率分别为100%和和50%,可能的最大亏损率分别为,可能的最大亏损率分别为30%和和10%,投资人计划投投资人计划投资金额不超过资金额不超过10万元,要求确保可能的资金亏损不超过万元,要求确保可能的资金亏损不超过1.8万元,问投资人对甲、万元,问投资人对甲、乙两个项目各投资多少万元,才能使可能的盈利最大?乙两个项目各投资多少万元,才能使可能的盈利最大?思路点拨:思路点拨:根据条件列出不等式组作出可行域,在可行域内平行移动目标函数根据条件列出不等式组作出可行域,在可行域内平行
21、移动目标函数对应的直线,求出取得最大值时,甲、乙两个项目各需投资的钱数对应的直线,求出取得最大值时,甲、乙两个项目各需投资的钱数解:解:设投资人分别用设投资人分别用x万元、万元、y万元投资甲、乙两个项目,万元投资甲、乙两个项目,由题意知由题意知 目标函数目标函数z=x+0.5y.上述不等式组表示的平面区域如图所示,阴影部分上述不等式组表示的平面区域如图所示,阴影部分(含边界含边界)即可行域即可行域作直线作直线 l0:x+0.5y=0,并作平行于直线,并作平行于直线 l0 的一组直线的一组直线x+0.5y=z,zR,与可行,与可行域相交,其中有一条直线经过可行域上的域相交,其中有一条直线经过可行
22、域上的M点,且与直线点,且与直线x0.5y0的距离最的距离最大这里大这里M点是直线点是直线xy10和和0.3x0.1y1.8的交点的交点解方程组解方程组 得得x4,y6.此时此时z140.567(万元万元)当当x4,y6时,时,z取得最大值取得最大值投资人用投资人用4万元投资甲项目,万元投资甲项目,6万元投资乙万元投资乙项目,才能在确保亏损不超过项目,才能在确保亏损不超过1.8万元的前提下,使可能的盈利最大万元的前提下,使可能的盈利最大变式变式3:某公司计划某公司计划2008年在甲、乙两个电视台做总时间不超过年在甲、乙两个电视台做总时间不超过300分钟的广告,分钟的广告,广告总费用不超过广告总
23、费用不超过9万元,甲、乙电视台的广告收费标准分别为万元,甲、乙电视台的广告收费标准分别为 500元元/分钟和分钟和200元元/分钟假定甲、乙两个电视台为该公司所做的每分钟广告,能给公司带分钟假定甲、乙两个电视台为该公司所做的每分钟广告,能给公司带来的收益分别为来的收益分别为0.3万元和万元和0.2万元问该公司如何分配在甲、乙两个电视台的万元问该公司如何分配在甲、乙两个电视台的广告时间,才能使公司的收益最大,最大收益是多少万元?广告时间,才能使公司的收益最大,最大收益是多少万元?解:解:设公司在甲电视台和乙电视台做广告的时间分别为设公司在甲电视台和乙电视台做广告的时间分别为x分钟和分钟和y分钟,
24、总收分钟,总收益为益为z元,由题意得元,由题意得目标函数为目标函数为z3 000 x2 000y.二元一次不等式组等价于二元一次不等式组等价于 作出二元一次不等式组所示的平面区域即可行域,如图作出二元一次不等式组所示的平面区域即可行域,如图所示,作直线所示,作直线l:3 000 x+2 000y=0,即即3x+2y=0.平移直线平移直线l,从图中可知,当直线从图中可知,当直线l过点过点M时,目标函数取得最大值时,目标函数取得最大值联立联立 解得解得x=100,y=200.点点M的坐标为的坐标为(100,200) =3 000 x+2 000y=700 000(元元)答:答:该该公司在甲电视台做
25、公司在甲电视台做100分钟广告,在乙电视台做分钟广告,在乙电视台做200分钟广告,公司的收益分钟广告,公司的收益最大,最大收益是最大,最大收益是70万元万元. 1解简单线性规划的方法称为图解法,这种方法是用一族平行直线与某平面区域相交,解简单线性规划的方法称为图解法,这种方法是用一族平行直线与某平面区域相交,研究直线在研究直线在y(或或x)轴上截距的最大值或最小值,从而求某些二元一次函数的最值轴上截距的最大值或最小值,从而求某些二元一次函数的最值2解线性规划问题,正确画出可行域并利用数形结合求最优解是重要的一环,故要解线性规划问题,正确画出可行域并利用数形结合求最优解是重要的一环,故要重视画图
26、;而在求最优解时,常把视线落在可行域的顶点上重视画图;而在求最优解时,常把视线落在可行域的顶点上3目标函数所对应的直线束的斜率,如果约束条件组中的某一约束条件所对应的直线目标函数所对应的直线束的斜率,如果约束条件组中的某一约束条件所对应的直线斜率相等,那么最优解有可能有无数个斜率相等,那么最优解有可能有无数个4解线性规划应用题需从已知条件中建立数学模型,然后利用图解法解决问题在这个解线性规划应用题需从已知条件中建立数学模型,然后利用图解法解决问题在这个过程中,建立模型需读懂题意,仔细分析,适当引变量过程中,建立模型需读懂题意,仔细分析,适当引变量(参数参数),再利用数学知识解决,再利用数学知识
27、解决 由此可见,解决应用问题不仅需一定的数学知识,还需阅读能力、抽象概括能力来由此可见,解决应用问题不仅需一定的数学知识,还需阅读能力、抽象概括能力来分析问题,最终解决问题,这些能力更需日积月累分析问题,最终解决问题,这些能力更需日积月累. 【规律方法总结【规律方法总结】【例【例4】 某运输公司接受了向抗洪抢险地区每天至少运送某运输公司接受了向抗洪抢险地区每天至少运送180 t支援物资的任务,支援物资的任务, 该公司有该公司有8辆载重为辆载重为6 t的的A型卡车和型卡车和4辆载重为辆载重为10 t的的B型卡车,有型卡车,有10名驾驶员,名驾驶员,每辆卡车每天往返的次数为每辆卡车每天往返的次数为
28、A型卡车型卡车4次,次,B型卡车型卡车3次,次, 每辆卡车每天往返的每辆卡车每天往返的费用为费用为A型卡车型卡车320元,元,B型卡车型卡车504元,请你给该公司调配车辆,使公司所花元,请你给该公司调配车辆,使公司所花的费用最低的费用最低本题的主要变元是两个型号的车辆的数目,设为本题的主要变元是两个型号的车辆的数目,设为x、y,写出不等式组和目标函数,写出不等式组和目标函数,但是本题的难点在于目标函数并不是在区域边界上取得最小值,实际上本题的可行但是本题的难点在于目标函数并不是在区域边界上取得最小值,实际上本题的可行域也不是一个平面区域,而是一些孤立的整点,域也不是一个平面区域,而是一些孤立的
29、整点, 本题就是要在这些孤立的整点中本题就是要在这些孤立的整点中找到问题的最优解本题最容易出错的就是这个整点最优解的寻找,方法不当就会找到问题的最优解本题最容易出错的就是这个整点最优解的寻找,方法不当就会找错,可能出现各种错误的结果找错,可能出现各种错误的结果 【错因分析【错因分析】目标函数目标函数z=320 x+504y(x,yN)作出上述不等式组所确定的平面区域,如图阴影所示即可行域作出上述不等式组所确定的平面区域,如图阴影所示即可行域结合图象,可知当结合图象,可知当z=320 x+504y在可行域内经过的整数点中,点在可行域内经过的整数点中,点(5,2)使使z=320 x+504y取得最
30、小值,取得最小值,zmin=3205+5042=2 608.每天调出每天调出A型车型车5辆,辆,B型车型车2辆,公司所花费用最低辆,公司所花费用最低 解:解:设每天调出设每天调出A型卡车型卡车x辆辆,B型卡车型卡车y辆辆,公司所花的费用为公司所花的费用为z元元,则则【答案模板答案模板】解决线性规划实际问题,首先要确定影响整个问题的两个主要变化因素,把这两个解决线性规划实际问题,首先要确定影响整个问题的两个主要变化因素,把这两个变化因素分别用两个变量变化因素分别用两个变量x,y表示,然后根据题目的具体要求把一些限制条件用关表示,然后根据题目的具体要求把一些限制条件用关于于x,y的不等式表示出来,这样就得到了问题的可行域,再用的不等式表示出来,这样就得到了问题的可行域,再用x,y表示出所要求解表示出
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度农村房屋转让合同(含土地流转服务)
- 二零二五年度公寓楼出租合同样本(精装修物业费家具家电)3篇
- 2025年度美容院投资入股合作协议模板3篇
- 2025年度兼职软件开发外包合同3篇
- 二零二五年度绿色能源项目公司贷款协议书3篇
- 二零二五年度全新教育机构兼职教师职称评定合同3篇
- 二零二五年度公司与员工数字货币合作合伙协议3篇
- 2025年度全日制劳务合同书(环保能源设施运维)3篇
- 2025年度绿色有机农产品直供合作购销合同协议3篇
- 2025年度水果店转让及供应链管理合同模板3篇
- 噎食风险评估和预防措施
- 幼儿绘本故事:小福变成大汉堡
- 常宝精特能源概况
- 政治经济学结构图解
- 服装品质管理人员工作手册
- 国家开放大学电大专科《兽医基础》2023-2024期末试题及答案试卷编号:2776
- 初三毕业班后期管理措施
- 示教机械手控制系统设计
- 氧化铝生产工艺教学(拜耳法)
- 选矿学基础PPT课件
- 安利食品经销商合同协议范本模板
评论
0/150
提交评论