版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022中考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1如图,ABC中,ADBC,AB=AC,BAD=30,且AD=AE,则EDC等于()A10B12.5C15D202若点A(2,),B(-3,),C(-1,)三点在抛物线的图象上,则、的大小关系是()ABCD3已知:如图是yax2+2x1的图象,那么ax2+2x10的根可能是下列哪
2、幅图中抛物线与直线的交点横坐标()ABCD4如图,下列条件不能判定ADBABC的是( )AABD=ACBBADB=ABCCAB2=ADACD 5如图,将ABC沿DE,EF翻折,顶点A,B均落在点O处,且EA与EB重合于线段EO,若DOF142,则C的度数为()A38B39C42D486在实数,中,其中最小的实数是()ABCD7下列计算正确的是()A2a2a21B(ab)2ab2Ca2+a3a5D(a2)3a68函数y自变量x的取值范围是( )Ax1Bx1且x3Cx3D1x39国家主席习近平在2018年新年贺词中说道:“安得广厦千万间,大庇天下寒士俱欢颜!2017年我国3400000贫困人口实现
3、易地扶贫搬迁、有了温暖的新家”其中3400000用科学记数法表示为()A0.34107B3.4106C3.4105D3410510计算(xl)(x2)的结果为( )Ax22Bx23x2Cx23x3Dx22x2二、填空题(共7小题,每小题3分,满分21分)11如图,直线mn,以直线m上的点A为圆心,适当长为半径画弧,分别交直线m,n于点B、C,连接AC、BC,若1=30,则2=_12如图,一个直角三角形纸片,剪去直角后,得到一个四边形,则1+2=_度13将一副直角三角板如图放置,使含30角的三角板的直角边和含45角的三角板一条直角边在同一条直线上,则1的度数为_ 14如图,M的半径为2,圆心M(
4、3,4),点P是M上的任意一点,PAPB,且PA、PB与x轴分别交于A、B两点,若点A、点B关于原点O对称,则AB的最小值为_15如图所示,一个宽为2cm的刻度尺在圆形光盘上移动,当刻度尺的一边与光盘相切时,另一边与光盘边缘两个交点处的读数恰好是“2”和“10”(单位:cm),那么该光盘的半径是_cm.16分式方程=1的解为_17如图,在ABC中,C=90,D是AC上一点,DEAB于点E,若AC=8,BC=6,DE=3,则AD的长为 _ 三、解答题(共7小题,满分69分)18(10分)如图,方格纸中每个小正方形的边长都是1个单位长度,在平面直角坐标系中的位置如图所示(1)直接写出关于原点的中心
5、对称图形各顶点坐标:_;(2)将绕B点逆时针旋转,画出旋转后图形.求在旋转过程中所扫过的图形的面积和点经过的路径长19(5分)某文教店老板到批发市场选购A、B两种品牌的绘图工具套装,每套A品牌套装进价比B品牌每套套装进价多2.5元,已知用200元购进A种套装的数量是用75元购进B种套装数量的2倍求A、B两种品牌套装每套进价分别为多少元?若A品牌套装每套售价为13元,B品牌套装每套售价为9.5元,店老板决定,购进B品牌的数量比购进A品牌的数量的2倍还多4套,两种工具套装全部售出后,要使总的获利超过120元,则最少购进A品牌工具套装多少套?20(8分)如图1,将两个完全相同的三角形纸片ABC和DE
6、C重合放置,其中C=90,B=E=30. 操作发现如图1,固定ABC,使DEC绕点C旋转当点D恰好落在BC边上时,填空:线段DE与AC的位置关系是 ;设BDC的面积为S1,AEC的面积为S1则S1与S1的数量关系是 猜想论证当DEC绕点C旋转到图3所示的位置时,小明猜想(1)中S1与S1的数量关系仍然成立,并尝试分别作出了BDC和AEC中BC,CE边上的高,请你证明小明的猜想拓展探究已知ABC=60,点D是其角平分线上一点,BD=CD=4,OEAB交BC于点E(如图4),若在射线BA上存在点F,使SDCF=SBDC,请直接写出相应的BF的长21(10分)如图,在平面直角坐标系中,直线经过点和,
7、双曲线经过点B(1)求直线和双曲线的函数表达式;(2)点C从点A出发,沿过点A与y轴平行的直线向下运动,速度为每秒1个单位长度,点C的运动时间为t(0t12),连接BC,作BDBC交x轴于点D,连接CD,当点C在双曲线上时,求t的值;在0t6范围内,BCD的大小如果发生变化,求tanBCD的变化范围;如果不发生变化,求tanBCD的值;当时,请直接写出t的值22(10分)已知关于x的一元二次方程3x26x+1k=0有实数根,k为负整数求k的值;如果这个方程有两个整数根,求出它的根23(12分)如图,点A,B,C都在抛物线y=ax22amx+am2+2m5(其中a0)上,ABx轴,ABC=135
8、,且AB=1(1)填空:抛物线的顶点坐标为 (用含m的代数式表示);(2)求ABC的面积(用含a的代数式表示);(3)若ABC的面积为2,当2m5x2m2时,y的最大值为2,求m的值24(14分)如图,ABC与A1B1C1是位似图形(1)在网格上建立平面直角坐标系,使得点A的坐标为(6,1),点C1的坐标为(3,2),则点B的坐标为_;(2)以点A为位似中心,在网格图中作AB2C2,使AB2C2和ABC位似,且位似比为12;(3)在图上标出ABC与A1B1C1的位似中心P,并写出点P的坐标为_,计算四边形ABCP的周长为_参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、
9、C【解析】试题分析:根据三角形的三线合一可求得DAC及ADE的度数,根据EDC=90-ADE即可得到答案ABC中,ADBC,AB=AC,BAD=30,DAC=BAD=30,AD=AE(已知),ADE=75EDC=90-ADE=15故选C考点:本题主要考查了等腰三角形的性质,三角形内角和定理点评:解答本题的关键是掌握等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合2、C【解析】首先求出二次函数的图象的对称轴x=2,且由a=10,可知其开口向上,然后由A(2,)中x=2,知最小,再由B(-3,),C(-1,)都在对称轴的左侧,而在对称轴的左侧,y随x得增大而减小,所以总结可得故选C点睛:此
10、题主要考查了二次函数的图像与性质,解答此题的关键是(1)找到二次函数的对称轴;(2)掌握二次函数的图象性质3、C【解析】由原抛物线与x轴的交点位于y轴的两端,可排除A、D选项;B、方程ax2+2x1=0有两个不等实根,且负根的绝对值大于正根的绝对值,B不符合题意;C、抛物线y=ax2与直线y=2x+1的交点,即交点的横坐标为方程ax2+2x1=0的根,C符合题意此题得解【详解】抛物线y=ax2+2x1与x轴的交点位于y轴的两端,A、D选项不符合题意;B、方程ax2+2x1=0有两个不等实根,且负根的绝对值大于正根的绝对值,B选项不符合题意;C、图中交点的横坐标为方程ax2+2x1=0的根(抛物
11、线y=ax2与直线y=2x+1的交点),C选项符合题意故选:C【点睛】本题考查了抛物线与x轴的交点以及二次函数的图象与位置变化,逐一分析四个选项中的图形是解题的关键4、D【解析】根据有两个角对应相等的三角形相似,以及根据两边对应成比例且夹角相等的两个三角形相似,分别判断得出即可【详解】解:A、ABD=ACB,A=A,ABCADB,故此选项不合题意;B、ADB=ABC,A=A,ABCADB,故此选项不合题意;C、AB2=ADAC,A=A,ABCADB,故此选项不合题意;D、=不能判定ADBABC,故此选项符合题意故选D【点睛】点评:本题考查了相似三角形的判定,利用了有两个角对应相等的三角形相似,
12、两边对应成比例且夹角相等的两个三角形相似5、A【解析】分析:根据翻折的性质得出A=DOE,B=FOE,进而得出DOF=A+B,利用三角形内角和解答即可详解:将ABC沿DE,EF翻折,A=DOE,B=FOE,DOF=DOE+EOF=A+B=142,C=180AB=180142=38 故选A点睛:本题考查了三角形内角和定理、翻折的性质等知识,解题的关键是灵活运用这些知识解决问题,学会把条件转化的思想,属于中考常考题型6、B【解析】由正数大于一切负数,负数小于0,正数大于0,两个负数绝对值大的反而小,把这四个数从小到大排列,即可求解【详解】解:0,-2,1,中,-201,其中最小的实数为-2;故选:
13、B【点睛】本题考查了实数的大小比较,关键是掌握:正数大于0,负数小于0,正数大于一切负数,两个负数绝对值大的反而小7、D【解析】根据合并同类项法则判断A、C;根据积的乘方法则判断B;根据幂的乘方法判断D,由此即可得答案.【详解】A、2a2a2a2,故A错误;B、(ab)2a2b2,故B错误;C、a2与a3不是同类项,不能合并,故C错误;D、(a2)3a6,故D正确,故选D【点睛】本题考查幂的乘方与积的乘方,合并同类项,熟练掌握各运算的运算性质和运算法则是解题的关键8、B【解析】由题意得,x-10且x-30,x1且x3.故选B.9、B【解析】解:3400000=.故选B.10、B【解析】根据多项
14、式的乘法法则计算即可.【详解】(xl)(x2)= x22xx2= x23x2.故选B.【点睛】本题考查了多项式与多项式的乘法运算,多项式与多项式相乘,先用一个多项式的每一项分别乘另一个多项式的每一项,再把所得的积相加.二、填空题(共7小题,每小题3分,满分21分)11、75【解析】试题解析:直线l1l2, 故答案为12、270【解析】根据三角形的内角和与平角定义可求解【详解】解析:如图,根据题意可知5=90, 3+4=90, 1+2=180+180-(3+4)=360-90=270,故答案为:270度.【点睛】本题主要考查了三角形的内角和定理和内角与外角之间的关系要会熟练运用内角和定理求角的度
15、数13、75【解析】先根据同旁内角互补,两直线平行得出ACDF,再根据两直线平行内错角相等得出2=A=45,然后根据三角形内角与外角的关系可得1的度数【详解】ACB=DFE=90,ACB+DFE=180,ACDF,2=A=45,1=2+D=45+30=75故答案为:75【点睛】本题考查了平行线的判定与性质,三角形外角的性质,求出2=A=45是解题的关键14、6【解析】点P在以O为圆心OA为半径的圆上,P是两个圆的交点,当O与M外切时,AB最小,根据条件求出AO即可求解;【详解】解:点P在以O为圆心OA为半径的圆上,P是两个圆的交点,当O与M外切时,AB最小,M的半径为2,圆心M(3,4),PM
16、5,OA3,AB6,故答案为6;【点睛】本题考查圆与圆的位置关系;能够将问题转化为两圆外切时AB最小是解题的关键15、5【解析】本题先根据垂径定理构造出直角三角形,然后在直角三角形中已知弦长和弓形高,根据勾股定理求出半径,从而得解【详解】解:如图,设圆心为O,弦为AB,切点为C如图所示则AB=8cm,CD=2cm连接OC,交AB于D点连接OA尺的对边平行,光盘与外边缘相切,OCABAD=4cm设半径为Rcm,则R2=42+(R-2)2,解得R=5,该光盘的半径是5cm故答案为5【点睛】此题考查了切线的性质及垂径定理,建立数学模型是关键16、x=1【解析】分析:分式方程去分母转化为整式方程,求出
17、整式方程的解得到x的值,经检验即可得到分式方程的解详解:两边都乘以x+4,得:3x=x+4,解得:x=1,检验:x=1时,x+4=60,所以分式方程的解为x=1,故答案为:x=1点睛:此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验17、1【解析】如图,由勾股定理可以先求出AB的值,再证明AEDACB,根据相似三角形的性质就可以求出结论【详解】在RtABC中,由勾股定理得AB=10,DEAB,AED=C=90A=A,AEDACB,AD=1故答案为1【点睛】本题考查了勾股定理的运用,相似三角形的判定及性质的运用,解答时求出AEDACB是解答本题的关键三、解答题(共7小题,满分69分)
18、18、(1),;(2)作图见解析,面积,【解析】(1)由在平面直角坐标系中的位置可得A、B、C的坐标,根据关于原点对称的点的坐标特点即可得、的坐标;(2)由旋转的性质可画出旋转后图形,利用面积的和差计算出,然后根据扇形的面积公式求出,利用旋转过程中扫过的面积进行计算即可再利用弧长公式求出点C所经过的路径长【详解】解:(1)由在平面直角坐标系中的位置可得:,与关于原点对称,(2)如图所示,即为所求,在旋转过程中所扫过的面积:点所经过的路径:【点睛】本题考查的是图形的旋转、及扇形面积和扇形弧长的计算,根据已知得出对应点位置,作出图形是解题的关键19、(1)A种品牌套装每套进价为1元,B种品牌套装每
19、套进价为7.5元;(2)最少购进A品牌工具套装2套【解析】试题分析:(1)利用两种套装的套数作为等量关系列方程求解.(2)利用总获利大于等于120,解不等式.试题解析:(1)解:设B种品牌套装每套进价为x元,则A种品牌套装每套进价为(x+2.5)元根据题意得:=2,解得:x=7.5,经检验,x=7.5为分式方程的解,x+2.5=1答:A种品牌套装每套进价为1元,B种品牌套装每套进价为7.5元(2)解:设购进A品牌工具套装a套,则购进B品牌工具套装(2a+4)套,根据题意得:(131)a+(9.57.5)(2a+4)120,解得:a16,a为正整数,a取最小值2答:最少购进A品牌工具套装2套点睛
20、:分式方程应用题:一设,一般题里有两个有关联的未知量,先设出一个未知量,并找出两个未知量的联系;二列,找等量关系,列方程,这个时候应该注意的是和差分倍关系:三解,正确解分式方程;四验,应用题要双检验;五答,应用题要写答.20、解:(1)DEAC(1)仍然成立,证明见解析;(3)3或2【解析】(1)由旋转可知:AC=DC,C=90,B=DCE=30,DAC=CDE=20ADC是等边三角形DCA=20DCA=CDE=20DEAC过D作DNAC交AC于点N,过E作EMAC交AC延长线于M,过C作CFAB交AB于点F 由可知:ADC是等边三角形, DEAC,DN=CF,DN=EMCF=EMC=90,B
21、 =30AB=1AC又AD=ACBD=AC(1)如图,过点D作DMBC于M,过点A作ANCE交EC的延长线于N,DEC是由ABC绕点C旋转得到,BC=CE,AC=CD,ACN+BCN=90,DCM+BCN=180-90=90,ACN=DCM,在ACN和DCM中, ,ACNDCM(AAS),AN=DM,BDC的面积和AEC的面积相等(等底等高的三角形的面积相等),即S1=S1; (3)如图,过点D作DF1BE,易求四边形BEDF1是菱形,所以BE=DF1,且BE、DF1上的高相等,此时SDCF1=SBDE;过点D作DF1BD,ABC=20,F1DBE,F1F1D=ABC=20,BF1=DF1,F
22、1BD=ABC=30,F1DB=90,F1DF1=ABC=20,DF1F1是等边三角形,DF1=DF1,过点D作DGBC于G,BD=CD,ABC=20,点D是角平分线上一点,DBC=DCB=20=30,BG=BC=,BD=3CDF1=180-BCD=180-30=150,CDF1=320-150-20=150,CDF1=CDF1,在CDF1和CDF1中,CDF1CDF1(SAS),点F1也是所求的点,ABC=20,点D是角平分线上一点,DEAB,DBC=BDE=ABD=20=30,又BD=3,BE=3cos30=3,BF1=3,BF1=BF1+F1F1=3+3=2,故BF的长为3或221、(1
23、)直线的表达式为,双曲线的表达式为;(2);当时,的大小不发生变化,的值为;t的值为或【解析】(1)由点利用待定系数法可求出直线的表达式;再由直线的表达式求出点B的坐标,然后利用待定系数法即可求出双曲线的表达式;(2)先求出点C的横坐标,再将其代入双曲线的表达式求出点C的纵坐标,从而即可得出t的值;如图1(见解析),设直线AB交y轴于M,则,取CD的中点K,连接AK、BK利用直角三角形的性质证明A、D、B、C四点共圆,再根据圆周角定理可得,从而得出,即可解决问题;如图2(见解析),过点B作于M,先求出点D与点M重合的临界位置时t的值,据此分和两种情况讨论:根据三点坐标求出的长,再利用三角形相似
24、的判定定理与性质求出DM的长,最后在中,利用勾股定理即可得出答案【详解】(1)直线经过点和将点代入得解得故直线的表达式为将点代入直线的表达式得解得双曲线经过点,解得故双曲线的表达式为;(2)轴,点A的坐标为点C的横坐标为12将其代入双曲线的表达式得C的纵坐标为,即由题意得,解得故当点C在双曲线上时,t的值为;当时,的大小不发生变化,求解过程如下:若点D与点A重合由题意知,点C坐标为由两点距离公式得:由勾股定理得,即解得因此,在范围内,点D与点A不重合,且在点A左侧如图1,设直线AB交y轴于M,取CD的中点K,连接AK、BK由(1)知,直线AB的表达式为令得,则,即点K为CD的中点,(直角三角形
25、中,斜边上的中线等于斜边的一半)同理可得:A、D、B、C四点共圆,点K为圆心(圆周角定理);过点B作于M由题意和可知,点D在点A左侧,与点M重合是一个临界位置此时,四边形ACBD是矩形,则,即因此,分以下2种情况讨论:如图2,当时,过点C作于N又,即由勾股定理得即解得或(不符题设,舍去)当时,同理可得:解得或(不符题设,舍去)综上所述,t的值为或【点睛】本题考查反比例函数综合题、锐角三角函数、相似三角形的判定和性质、四点共圆、勾股定理等知识点,解题的关键是学会添加常用辅助线,构造相似三角形解决问题22、(2)k=2,2(2)方程的根为x2=x2=2【解析】(2)根据方程有实数根,得到根的判别式
26、的值大于等于0列出关于k的不等式,求出不等式的解集即可得到k的值;(2)将k的值代入原方程,求出方程的根,经检验即可得到满足题意的k的值【详解】解:(2)根据题意,得=(6)243(2k)0,解得 k2k为负整数,k=2,2(2)当k=2时,不符合题意,舍去; 当k=2时,符合题意,此时方程的根为x2=x2=2【点睛】本题考查了根的判别式,一元二次方程ax2+bx+c=0(a0)的根与=b2-4ac有如下关系:(2)0时,方程有两个不相等的实数根;(2)=0时,方程有两个相等的实数根;(3)0时,方程没有实数根也考查了一元二次方程的解法23、(1)(m,2m2);(2)SABC =;(3)m的
27、值为或10+2【解析】分析:(1)利用配方法将二次函数解析式由一般式变形为顶点式,此题得解;(2)过点C作直线AB的垂线,交线段AB的延长线于点D,由ABx轴且AB1,可得出点B的坐标为(m2,1a2m2),设BDt,则点C的坐标为(m2t,1a2m2t),利用二次函数图象上点的坐标特征可得出关于t的一元二次方程,解之取其正值即可得出t值,再利用三角形的面积公式即可得出SABC的值;(3)由(2)的结论结合SABC2可求出a值,分三种情况考虑:当m2m2,即m2时,x2m2时y取最大值,利用二次函数图象上点的坐标特征可得出关于m的一元二次方程,解之可求出m的值;当2m2m2m2,即2m2时,xm时y取最大值,利用二次函数图象上点的坐标特征可得出关于m的一元一次方程,解之可求出m的值;当m2m2,即m2时,x2m2时y取最大值,利用二次函数图象上点的坐标特征可得出关于m的一元一次方程,解之可求出m的值综
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 统计基础课程设计论文
- 素描几何创作课程设计
- 汉中茶叶课程设计
- 2024河南省建筑安全员《C证》考试题库及答案
- 幼儿简笔画美工课程设计
- 智能门禁系统课程设计
- 矿井开采课程设计心得
- 研学课程设计地理类
- 税务会计实训课程设计
- 硅冶炼厂的职业健康管理与实践考核试卷
- 新加坡学习汇报
- 房地产研究 -TOD站城一体化开发实践
- 高速公路隧道工程施工方案
- 中国营养科学全书
- 阿司可咖胶囊镇痛作用的临床研究
- 《机械制图》说课课件-画组合体视图的方法和步骤
- 2023-2024学年河南省南阳市唐河县数学四年级第一学期期末监测模拟试题含答案
- 2023-2024学年成都市锦江区四年级数学第一学期期末统考模拟试题含答案
- (完整版)初中英语语法专练动名词Word版含答案
- 高二期末考试冲刺主题班会教学课件
- FASE方程式赛车车架设计报告
评论
0/150
提交评论