版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022中考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(共10小题,每小题3分,共30分)1如果将抛物线y=x2向右平移1个单位,那么所得的抛物线的表达式是()Ay=x2+1By=x2-1Cy=(x+1)2Dy=(x-1)22如图,在平面直角坐标系中,矩形ABOC的两边在坐标轴上,OB1,点A在函数y(x0)的图象上,
2、将此矩形向右平移3个单位长度到A1B1O1C1的位置,此时点A1在函数y(x0)的图象上,C1O1与此图象交于点P,则点P的纵坐标是()ABCD3如图,AB是O的弦,半径OCAB于点D,若O的半径为5,AB=8,则CD的长是( )A2 B3 C4 D54如图,直角边长为的等腰直角三角形与边长为3的等边三角形在同一水平线上,等腰直角三角形沿水平线从左向右匀速穿过等边三角形时,设穿过时间为t,两图形重合部分的面积为S,则S关于t的图象大致为( )ABCD5如图,是的直径,弦,则阴影部分的面积为( )A2BCD6如图,在平行四边形ABCD中,AC与BD相交于O,且AO=BD=4,AD=3,则BOC的
3、周长为()A9B10C12D147如图,任意转动正六边形转盘一次,当转盘停止转动时,指针指向大于3的数的概率是()ABCD8下列图案中,既是轴对称图形又是中心对称图形的是()ABCD9已知二次函数y=ax2+bx+c(a0)的图象如图所示,有下列5个结论:abc0;b0;2c3bn(an+b)(n1),其中正确的结论有( )A2个B3个C4个D5个10把边长相等的正六边形ABCDEF和正五边形GHCDL的CD边重合,按照如图所示的方式叠放在一起,延长LG交AF于点P,则APG()A141B144C147D150二、填空题(本大题共6个小题,每小题3分,共18分)11若代数式的值不小于代数式的值
4、,则x的取值范围是_12受益于电子商务发展和法治环境改善等多重因素,快递业务迅猛发展预计达州市2018年快递业务量将达到5.5亿件,数据5.5亿用科学记数法表示为_13(题文)如图1,点P从ABC的顶点B出发,沿BCA匀速运动到点A,图2是点P运动时,线段BP的长度y随时间x变化的关系图象,其中M为曲线部分的最低点,则ABC的面积是_14已知 x(x+1)x+1,则x_15据统计,今年无锡鼋头渚“樱花节”活动期间入园赏樱人数约803万人次,用科学记数法可表示为_人次16如图,AB是O的直径,C是O上的点,过点C作O的切线交AB的延长线于点D若A=32,则D=_度三、解答题(共8题,共72分)1
5、7(8分)如图1,定义:在直角三角形ABC中,锐角的邻边与对边的比叫做角的余切,记作ctan,即ctan角的邻边角的对边ACBC,根据上述角的余切定义,解下列问题:(1)如图1,若BC3,AB5,则ctanB_;(2)ctan60_;(3)如图2,已知:ABC中,B是锐角,ctan C2,AB10,BC20,试求B的余弦cosB的值18(8分)如图,AB为O的直径,直线BMAB于点B,点C在O上,分别连接BC,AC,且AC的延长线交BM于点D,CF为O的切线交BM于点F(1)求证:CFDF;(2)连接OF,若AB10,BC6,求线段OF的长19(8分)如图,在平面直角坐标系中,抛物线yx2mx
6、n经过点A(3,0)、B(0,3),点P是直线AB上的动点,过点P作x轴的垂线交抛物线于点M,设点P的横坐标为t分别求出直线AB和这条抛物线的解析式若点P在第四象限,连接AM、BM,当线段PM最长时,求ABM的面积是否存在这样的点P,使得以点P、M、B、O为顶点的四边形为平行四边形?若存在,请直接写出点P的横坐标;若不存在,请说明理由20(8分)如图,在ABC中,ACB=90,O是边AC上一点,以O为圆心,以OA为半径的圆分别交AB、AC于点E、D,在BC的延长线上取点F,使得BF=EF(1)判断直线EF与O的位置关系,并说明理由;(2)若A=30,求证:DG=DA;(3)若A=30,且图中阴
7、影部分的面积等于2,求O的半径的长21(8分)如图,一次函数y=kx+b的图象分别与反比例函数y=的图象在第一象限交于点A(4,3),与y轴的负半轴交于点B,且OA=OB(1)求函数y=kx+b和y=的表达式;(2)已知点C(0,8),试在该一次函数图象上确定一点M,使得MB=MC,求此时点M的坐标22(10分)如图,已知的直径,是的弦,过点作的切线交的延长线于点,过点作,垂足为,与交于点,设,的度数分别是,且(1)用含的代数式表示;(2)连结交于点,若,求的长23(12分)如图,在平面直角坐标系中,一次函数的图象分别交x轴、y轴于A、B两点,与反比例函数的图象交于C、D两点.已知点C的坐标是
8、(6,-1),D(n,3).求m的值和点D的坐标.求的值.根据图象直接写出:当x为何值时,一次函数的值大于反比例函数的值?24如图1,是一个材质均匀可自由转动的转盘,转盘的四个扇形面积相等,分别有数字1,2,3,1如图2,正方形ABCD顶点处各有一个圈跳圈游戏的规则为:游戏者每转动转盘一次,当转盘停止运动时,指针所落扇形中的数字是几(当指针落在四个扇形的交线上时,重新转动转盘),就沿正方形的边顺时针方向连续跳几个边长如:若从图A起跳,第一次指针所落扇形中的数字是3,就顺时针连线跳3个边长,落到圈D;若第二次指针所落扇形中的数字是2,就从D开始顺时针续跳2个边长,落到圈B;设游戏者从圈A起跳(1
9、)嘉嘉随机转一次转盘,求落回到圈A的概率P1;(2)琪琪随机转两次转盘,用列表法求最后落回到圈A的概率P2,并指出她与嘉嘉落回到圈A的可能性一样吗?参考答案一、选择题(共10小题,每小题3分,共30分)1、D【解析】本题主要考查二次函数的解析式【详解】解:根据二次函数的解析式形式可得,设顶点坐标为(h,k),则二次函数的解析式为y=a(x-h)2+k.由原抛物线解析式y=x2可得a=1,且原抛物线的顶点坐标为(0,0),向右平移1个单位后的顶点坐标为(1,0),故平移后的解析式为y=(x-1)2.故选D.【点睛】本题主要考查二次函数的顶点式,根据顶点的平移可得到二次函数平移后的解析式.2、C【
10、解析】分析:先求出A点坐标,再根据图形平移的性质得出A1点的坐标,故可得出反比例函数的解析式,把O1点的横坐标代入即可得出结论详解:OB=1,ABOB,点A在函数 (x0)的图象上,k=4,反比例函数的解析式为,O1(3,0),C1O1x轴,当x=3时, P 故选C.点睛:考查反比例函数图象上点的坐标特征, 坐标与图形变化-平移,解题的关键是运用双曲线方程求出点A的坐标,利用平移的性质求出点A1的坐标.3、A【解析】试题分析:已知AB是O的弦,半径OCAB于点D,由垂径定理可得AD=BD=4,在RtADO中,由勾股定理可得OD=3,所以CD=OC-OD=5-3=2.故选A.考点:垂径定理;勾股
11、定理.4、B【解析】先根据等腰直角三角形斜边为2,而等边三角形的边长为3,可得等腰直角三角形沿水平线从左向右匀速穿过等边三角形时,出现等腰直角三角形完全处于等边三角形内部的情况,进而得到S关于t的图象的中间部分为水平的线段,再根据当t=0时,S=0,即可得到正确图象【详解】根据题意可得,等腰直角三角形斜边为2,斜边上的高为1,而等边三角形的边长为3,高为,故等腰直角三角形沿水平线从左向右匀速穿过等边三角形时,出现等腰直角三角形完全处于等边三角形内部的情况,故两图形重合部分的面积先增大,然后不变,再减小,S关于t的图象的中间部分为水平的线段,故A,D选项错误;当t0时,S0,故C选项错误,B选项
12、正确;故选:B【点睛】本题考查了动点问题的函数图像,根据重复部分面积的变化是解题的关键5、D【解析】分析:连接OD,则根据垂径定理可得出CE=DE,继而将阴影部分的面积转化为扇形OBD的面积,代入扇形的面积公式求解即可详解:连接OD,CDAB, (垂径定理),故 即可得阴影部分的面积等于扇形OBD的面积,又 (圆周角定理),OC=2,故S扇形OBD= 即阴影部分的面积为.故选D.点睛:考查圆周角定理,垂径定理,扇形面积的计算,熟记扇形的面积公式是解题的关键.6、A【解析】利用平行四边形的性质即可解决问题.【详解】四边形ABCD是平行四边形,AD=BC=3,OD=OB=2,OA=OC=4,OBC
13、的周长=3+2+4=9,故选:A【点睛】题考查了平行四边形的性质和三角形周长的计算,平行四边形的性质有:平行四边形对边平行且相等;平行四边形对角相等,邻角互补;平行四边形对角线互相平分.7、D【解析】分析:根据概率的求法,找准两点:全部情况的总数;符合条件的情况数目;二者的比值就是其发生的概率详解:共6个数,大于3的有3个,P(大于3)=.故选D点睛:本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=8、B【解析】根据轴对称图形与中心对称图形的概念求解【详解】A、是轴对称图形,不是中心对称图形,故此选项错误;B、是轴对称图形
14、,也是中心对称图形,故此选项正确;C、不是轴对称图形,是中心对称图形,故此选项错误;D、不是轴对称图形,是中心对称图形,故此选项错误故选B【点睛】考查了中心对称图形与轴对称图形的概念轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合9、B【解析】观察图象可知a0,b0,c0,由此即可判定;当x=1时,y=ab+c由此可判定;由对称知,当x=2时,函数值大于0,即y=4a+2b+c0,由此可判定;当x=3时函数值小于0,即y=9a+3b+c0,且x= =1,可得a=,代入y=9a+3b+c0即可判定;当x=1时,y的值最大此时,y=a+b
15、+c,当x=n时,y=an2+bn+c,由此即可判定.【详解】由图象可知:a0,b0,c0,abc0,故此选项错误;当x=1时,y=ab+c0,即ba+c,故此选项错误;由对称知,当x=2时,函数值大于0,即y=4a+2b+c0,故此选项正确;当x=3时函数值小于0,y=9a+3b+c0,且x=1即a=,代入得9()+3b+c0,得2c3b,故此选项正确;当x=1时,y的值最大此时,y=a+b+c,而当x=n时,y=an2+bn+c,所以a+b+can2+bn+c,故a+ban2+bn,即a+bn(an+b),故此选项正确正确故选B【点睛】本题主要考查了抛物线的图象与二次函数系数之间的关系,熟
16、知抛物线的图象与二次函数系数之间的关系是解决本题的关键10、B【解析】先根据多边形的内角和公式分别求得正六边形和正五边形的每一个内角的度数,再根据多边形的内角和公式求得APG的度数【详解】(62)1806120,(52)1805108,APG(62)18012031082720360216144,故选B【点睛】本题考查了多边形内角与外角,关键是熟悉多边形内角和定理:(n2)180 (n3)且n为整数)二、填空题(本大题共6个小题,每小题3分,共18分)11、x【解析】根据题意列出不等式,依据解不等式得基本步骤求解可得【详解】解:根据题意,得:,6(3x1)5(15x),18x6525x,18x
17、+25x5+6,43x11,x,故答案为x【点睛】本题主要考查解不等式得基本技能,熟练掌握解一元一次不等式的基本步骤是解题的关键12、5.51【解析】分析:科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值10时,n是正数;当原数的绝对值1时,n是负数详解:5.5亿=5 5000 0000=5.51,故答案为5.51点睛:此题考查科学记数法的表示方法科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值13、12【解析】根据题意观察图象
18、可得BC=5,点P在AC上运动时,BPAC时,BP有最小值,观察图象可得,BP的最小值为4,即BPAC时BP=4,又勾股定理求得CP=3,因点P从点C运动到点A,根据函数的对称性可得CP=AP=3,所以ABC的面积是12(3+3)4=12.14、1或-1【解析】方程可化为:,或,或.故答案为1或-1.15、8.03106【解析】科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值1时,n是正数;当原数的绝对值1时,n是负数803万=.16、1【解析】分析:连接OC,根据圆周角定理得到C
19、OD=2A,根据切线的性质计算即可详解:连接OC,由圆周角定理得,COD=2A=64,CD为O的切线,OCCD,D=90-COD=1,故答案为:1点睛:本题考查的是切线的性质、圆周角定理,掌握圆的切线垂直于经过切点的半径是解题的关键三、解答题(共8题,共72分)17、(1);(2);(3)【解析】试题分析:(1)先利用勾股定理计算出AC=4,然后根据余切的定义求解;(2)根据余切的定义得到ctan60=,然后把tan60=代入计算即可;(3)作AHBC于H,如图2,先在RtACH中利用余切的定义得到ctanC=2,则可设AH=x,CH=2x,BH=BCCH=202x,接着再在RtABH中利用勾
20、股定理得到(202x)2+x2=102,解得x1=6,x2=10(舍去),所以BH=8,然后根据余弦的定义求解解:(1)BC=3,AB=5,AC=4,ctanB=;(2)ctan60=;(3)作AHBC于H,如图2,在RtACH中,ctanC=2,设AH=x,则CH=2x,BH=BCCH=202x,在RtABH中,BH2+AH2=AB2,(202x)2+x2=102,解得x1=6,x2=10(舍去),BH=2026=8,cosB=考点:解直角三角形18、(1)详见解析;(2)OF【解析】(1)连接OC,如图,根据切线的性质得1+3=90,则可证明3=4,再根据圆周角定理得到ACB=90,然后根
21、据等角的余角相等得到BDC=5,从而根据等腰三角形的判定定理得到结论;(2)根据勾股定理计算出AC=8,再证明ABCABD,利用相似比得到AD=,然后证明OF为ABD的中位线,从而根据三角形中位线性质求出OF的长【详解】(1)证明:连接OC,如图,CF为切线,OCCF,1+390,BMAB,2+490,OCOB,12,34,AB为直径,ACB90,3+590,4+BDC90,BDC5,CFDF;(2)在RtABC中,AC8,BACDAB,ABCABD,即,AD,34,FCFB,而FCFD,FDFB,而BOAO,OF为ABD的中位线,OFAD【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的
22、半径若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系也考查了圆周角定理和垂径定理19、 (1)抛物线的解析式是.直线AB的解析式是.(2) .(3)P点的横坐标是或.【解析】(1)分别利用待定系数法求两函数的解析式:把A(3,0)B(0,3)分别代入y=x2+mx+n与y=kx+b,得到关于m、n的两个方程组,解方程组即可;(2)设点P的坐标是(t,t3),则M(t,t22t3),用P点的纵坐标减去M的纵坐标得到PM的长,即PM=(t3)(t22t3)=t2+3t,然后根据二次函数的最值得到当t=时,PM最长为=,再利用三角形的面积公式利用SABM=SBPM+SAPM计算即可;(3)
23、由PMOB,根据平行四边形的判定得到当PM=OB时,点P、M、B、O为顶点的四边形为平行四边形,然后讨论:当P在第四象限:PM=OB=3,PM最长时只有,所以不可能;当P在第一象限:PM=OB=3,(t22t3)(t3)=3;当P在第三象限:PM=OB=3,t23t=3,分别解一元二次方程即可得到满足条件的t的值【详解】解:(1)把A(3,0)B(0,-3)代入,得解得所以抛物线的解析式是.设直线AB的解析式是,把A(3,0)B(0,)代入,得解得所以直线AB的解析式是.(2)设点P的坐标是(),则M(,),因为在第四象限,所以PM=,当PM最长时,此时=.(3)若存在,则可能是:P在第四象限
24、:平行四边形OBMP ,PM=OB=3, PM最长时,所以不可能.P在第一象限平行四边形OBPM: PM=OB=3,解得,(舍去),所以P点的横坐标是.P在第三象限平行四边形OBPM:PM=OB=3,解得(舍去),所以P点的横坐标是.所以P点的横坐标是或.20、(1)EF是O的切线,理由详见解析;(1)详见解析;(3)O的半径的长为1【解析】(1)连接OE,根据等腰三角形的性质得到A=AEO,B=BEF,于是得到OEG=90,即可得到结论;(1)根据含30的直角三角形的性质证明即可;(3)由AD是O的直径,得到AED=90,根据三角形的内角和得到EOD=60,求得EGO=30,根据三角形和扇形
25、的面积公式即可得到结论【详解】解:(1)连接OE,OA=OE,A=AEO,BF=EF,B=BEF,ACB=90,A+B=90,AEO+BEF=90,OEG=90,EF是O的切线;(1)AED=90,A=30,ED=AD,A+B=90,B=BEF=60,BEF+DEG=90,DEG=30,ADE+A=90,ADE=60,ADE=EGD+DEG,DGE=30,DEG=DGE,DG=DE,DG=DA;(3)AD是O的直径,AED=90,A=30,EOD=60,EGO=30,阴影部分的面积 解得:r1=4,即r=1,即O的半径的长为1【点睛】本题考查了切线的判定,等腰三角形的性质,圆周角定理,扇形的面
26、积的计算,正确的作出辅助线是解题的关键21、(1) ,y=2x1;(2).【解析】(1)利用待定系数法即可解答;(2)作MDy轴,交y轴于点D,设点M的坐标为(x,2x-1),根据MB=MC,得到CD=BD,再列方程可求得x的值,得到点M的坐标【详解】解:(1)把点A(4,3)代入函数得:a=34=12,A(4,3)OA=1,OA=OB,OB=1,点B的坐标为(0,1)把B(0,1),A(4,3)代入y=kx+b得:y=2x1(2)作MDy轴于点D.点M在一次函数y=2x1上,设点M的坐标为(x,2x1)则点D(0,2x-1)MB=MC,CD=BD8-(2x-1)=2x-1+1解得:x=2x1= ,点M的坐标为 .【点睛】本题考查了一次函数与反比例函数的交点,解决本题的关键是利用待定系数法求解析式22、(1);(2)【解析】(1)连接OC,根据切线的性质得到OCDE,可以证明ADOC,根据平行线的性质可得,则根据等腰三角形的性质可得,利用,化简计算即可得到答案;(2)连接CF,根据,可得,利用中垂线和等腰三角形的性质可证四边形是平行四边形,得到AOF为等边三角形,由并可得四边形是菱形,可证是等边三角形,有FAO=60,再根据弧长公式计算即可【详解】解:(1)如图示,连结,是的切线,又,即(2)如图示,连结,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度教育信息化设备代理采购协议3篇
- 2025年度冷链运输装卸搬运承包合同:冷冻食品安全搬运作业合同4篇
- 2025年度个人货车运输租赁合同纠纷处理办法
- 二零二五年度企业内部审计与内部控制服务合同
- 《财务预测和预算》课件
- 《创新水资源及环保》课件
- 二零二五年度高速公路桥梁纯劳务清包工施工合同4篇
- 二零二五年度智能化车间场地租赁与自动化生产线合同4篇
- 二零二五年度电子商务平台充值卡销售与营销支持合同3篇
- 2025年度企业年金待遇发放赔偿及社保补偿协议范本4篇
- 2024版塑料购销合同范本买卖
- 【高一上】【期末话收获 家校话未来】期末家长会
- JJF 2184-2025电子计价秤型式评价大纲(试行)
- GB/T 44890-2024行政许可工作规范
- 有毒有害气体岗位操作规程(3篇)
- 儿童常见呼吸系统疾病免疫调节剂合理使用专家共识2024(全文)
- 2025届山东省德州市物理高三第一学期期末调研模拟试题含解析
- 《华润集团全面预算管理案例研究》
- 2024-2025高考英语全国卷分类汇编之完型填空(含答案及解析)
- 二年级下册加减混合竖式练习360题附答案
- 苏教版五年级数学下册解方程五种类型50题
评论
0/150
提交评论