版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、Tue Sep 18 Intro 1: Computing, statistics, Perl, MathematicaTue Sep 25 Intro 2: Biology, comparative genomics, models & evidence, applications Tue Oct 02 DNA 1: Polymorphisms, populations, statistics, pharmacogenomics, databasesTue Oct 09 DNA 2: Dynamic programming, Blast, multi-alignment, HiddenMar
2、kovModelsTue Oct 16 RNA 1: 3D-structure, microarrays, library sequencing & quantitation concepts Tue Oct 23 RNA 2: Clustering by gene or condition, DNA/RNA motifs. Tue Oct 30 Protein 1: 3D structural genomics, homology, dynamics, function & drug designTue Nov 06 Protein 2: Mass spectrometry, modific
3、ations, quantitation of interactionsTue Nov 13 Network 1: Metabolic kinetic & flux balance optimization methodsTue Nov 20 Network 2: Molecular computing, self-assembly, genetic algorithms, neural-netsTue Nov 27 Network 3: Cellular, developmental, social, ecological & commercial modelsTue Dec 04 Proj
4、ect presentationsTue Dec 11 Project PresentationsTue Jan 08 Project PresentationsTue Jan 15 Project PresentationsBio 101: Genomics & Computational BiologyRNA1: Last weeks take home lessons Integration with previous topics (HMM for RNA structure) Goals of molecular quantitation (maximal fold-changes,
5、 clustering & classification of genes & conditions/cell types, causality) Genomics-grade measures of RNA and protein and how we choose (SAGE, oligo-arrays, gene-arrays)Sources of random and systematic errors (reproducibilty of RNA source(s), biases in labeling, non-polyA RNAs, effects of array geome
6、try, cross-talk). Interpretation issues (splicing, 5 & 3 ends, editing, gene families, small RNAs, antisense, apparent absence of RNA).Time series data: causality, mRNA decay, time-warpingRNA2: Todays story & goalsClustering by gene and/or condition Distance and similarity measuresClustering & class
7、ificationApplicationsDNA & RNA motif discovery & searchData- Ratios- Log Ratios- Absolute Measurement- Euclidean Dist.- Manhattan Dist.- Sup. Dist.- Correlation Coeff.- Single- Complete- Average- CentroidUnsupervised | Supervised- SVM- Relevance NetworksHierarchical | Non-hierarchical- Minimal Spann
8、ing Tree- K-means- SOMData Normalization | Distance Metric | Linkage | Clustering MethodGene Expression Clustering Decision TreeHow to normalize- Variance normalize- Mean center normalize- Median center normalizeWhat to normalize- genes- conditions(Whole genome) RNA quantitation objectivesRNAs showi
9、ng maximum changeminimum change detectable/meaningfulRNA absolute levels (compare protein levels)minimum amount detectable/meaningfulClassification: drugs & cancersNetwork - direct causality- motifsClustering vs. supervised learningK-means clusteringSOM = Self Organizing MapsSVD = Singular Value dec
10、ompositionPCA = Principal Component AnalysisSVM = Support Vector Machine classification and Relevance networksBrown et al. PNAS 97:262 Butte et al PNAS 97:12182Cluster analysis of mRNA expression dataBy gene (rat spinal cord development, yeast cell cycle): Wen et al., 1998; Tavazoie et al., 1999; Ei
11、sen et al., 1998; Tamayo et al., 1999By condition or cell-type or by gene&cell-type (human cancer): Golub, et al. 1999; Alon, et al. 1999; Perou, et al. 1999; Weinstein, et al. 1997Cheng, ISMB 2000. .Cluster AnalysisProtein/protein complexGenesDNA regulatory elementsClustering hierarchical & non-Hie
12、rarchical: a series of successive fusions of data until a final number of clusters is obtained; e.g. Minimal Spanning Tree: each component of the population to be a cluster. Next, the two clusters with the minimum distance between them are fused to form a single cluster. Repeated until all component
13、s are grouped. Non-: e.g. K-mean: K clusters chosen such that the points are mutually farthest apart. Each component in the population assigned to one cluster by minimum distance. The centroids position is recalculated and repeat until all the components are grouped. The criterion minimized, is the
14、within-clusters sum of the variance.Clusters of Two-Dimensional DataKey Terms in Cluster AnalysisDistance measuresSimilarity measuresHierarchical and non-hierarchicalSingle/complete/average linkageDendrogramDistance Measures: Minkowski MetricMost Common Minkowski MetricsAn Example43xy Manhattan dist
15、ance is called Hamming distance when all features are binary.Gene Expression Levels Under 17 Conditions (1-High,0-Low)Similarity Measures: Correlation CoefficientWhat kind of x and y givelinear CC ? Similarity Measures: Correlation CoefficientTimeGene AGene BGene ATimeGene BExpression LevelExpressio
16、n LevelExpression LevelTimeGene AGene BHierarchical Clustering DendrogramsAlon et al. 1999Clustering tree for the tissue samplesTumors(T) and normal tissue(n).Hierarchical Clustering TechniquesThe distance between two clusters is defined as the distance betweenSingle-Link Method / Nearest Neighbor:
17、their closest members.Complete-Link Method / Furthest Neighbor: their furthest members.Centroid: their centroids.Average: average of all cross-cluster pairs.Single-Link MethodbaDistance MatrixEuclidean Distance(1)(2)(3)a,b,cccda,bdda,b,c,dComplete-Link MethodbaDistance MatrixEuclidean Distance(1)(2)
18、(3)a,bccda,bdc,da,b,c,dDendrograms2460Single-LinkComplete-LinkWhich clustering methods do you suggest for the following two-dimensional data?Nadler and Smith, Pattern Recognition Engineering, 1993Data- Ratios- Log Ratios- Absolute Measurement- Euclidean Dist.- Manhattan Dist.- Sup. Dist.- Correlatio
19、n Coeff.- Single- Complete- Average- CentroidUnsupervised | Supervised- SVM- Relevance NetworksHierarchical | Non-hierarchical- Minimal Spanning Tree- K-means- SOMData Normalization | Distance Metric | Linkage | Clustering MethodGene Expression Clustering Decision TreeHow to normalize- Variance norm
20、alize- Mean center normalize- Median center normalizeWhat to normalize- genes- conditionsNormalized Expression DataTavazoie et al. 1999 ( :/)Time-point 1Time-point 3Time-point 2Gene 1Gene 2Normalized Expression Data from microarraysT1T2T3Gene 1Gene N.Representation of expression
21、datadijIdentifying prevalent expression patterns (gene clusters)Time-point 1Time-point 3Time-point 2-1.8-1.3-0.8-1.2123-2-1.5-1-0.500.511.5123-1.5-1-0.500.511.5123Time -pointTime -pointTime -pointNormalizedExpressionNormalizedExpressionNormalizedExpressionGlycolysisNuclear OrganizationRibos
22、omeTranslationUnknownGenesMIPS functional categoryCluster contentsRNA2: Todays story & goalsClustering by gene and/or condition Distance and similarity measuresClustering & classificationApplicationsDNA & RNA motif discovery & searchMotif-finding algorithmsoligonucleotide frequenciesGibbs sampling (
23、e.g. AlignACE)MEMEClustalWMACAWTranscription control sites(7 bases of information)Genome:(12 Mb) 7 bases of information (14 bits) 1 match every 16000 sites. 1500 such matches in a 12 Mb genome (24 * 106 sites). The distribution of numbers of sites for different motifs is Poisson with mean 1500, whic
24、h can be approximated as normal with a mean of 1500 and a standard deviation of 40 sites. Therefore, 100 sites are needed to achieve a detectable signal above background.Feasibility of a whole-genome motif search? Whole-genome mRNA expression data: two-way comparisons between different conditions or
25、 mutants, clustering/grouping over many conditions/timepoints. Shared phenotype (functional category). Conservation among different species. Details of the sequence selection: eliminate protein-coding regions, repetitive regions, and any other sequences not likely to contain control sites.Sequence S
26、earch Space Reduction Whole-genome mRNA expression data: two-way comparisons between different conditions or mutants, clustering/grouping over many conditions/timepoints. Shared phenotype (functional category). Conservation among different species. Details of the sequence selection: eliminate protei
27、n-coding regions, repetitive regions, and any other sequences not likely to contain control sites.Sequence Search Space Reduction Modification of Gibbs Motif Sampling (GMS), a routine for motif finding in protein sequences (Lawrence, et al. Science 262:208-214, 1993). Advantages of GMS: stochastic s
28、ampling variable number of sites per input sequence distributed information content per motif AlignACE modifications: considers both strands of DNA simultaneously efficiently returns multiple distinct motifs various other tweaksMotif FindingAlignACE(Aligns nucleic Acid Conserved Elements)5- TCTCTCTC
29、CACGGCTAATTAGGTGATCATGAAAAAATGAAAAATTCATGAGAAAAGAGTCAGACATCGAAACATACAT5- ATGGCAGAATCACTTTAAAACGTGGCCCCACCCGCTGCACCCTGTGCATTTTGTACGTTACTGCGAAATGACTCAACG5- CACATCCAACGAATCACCTCACCGTTATCGTGACTCACTTTCTTTCGCATCGCCGAAGTGCCATAAAAAATATTTTTT5- TGCGAACAAAAGAGTCATTACAACGAGGAAATAGAAGAAAATGAAAAATTTTCGACAAAATGTAT
30、AGTCATTTCTATC5- ACAAAGGTACCTTCCTGGCCAATCTCACAGATTTAATATAGTAAATTGTCATGCATATGACTCATCCCGAACATGAAA5- ATTGATTGACTCATTTTCCTCTGACTACTACCAGTTCAAAATGTTAGAGAAAAATAGAAAAGCAGAAAAAATAAATAA5- GGCGCCACAGTCCGCGTTTGGTTATCCGGCTGACTCATTCTGACTCTTTTTTGGAAAGTGTGGCATGTGCTTCACACAHIS7 ARO4ILV6THR4ARO1HOM2PRO3300-600 bp of u
31、pstream sequence per gene are searched in Saccharomyces cerevisiae.AlignACE ExampleInput Data Set5- TCTCTCTCCACGGCTAATTAGGTGATCATGAAAAAATGAAAAATTCATGAGAAAAGAGTCAGACATCGAAACATACAT5- ATGGCAGAATCACTTTAAAACGTGGCCCCACCCGCTGCACCCTGTGCATTTTGTACGTTACTGCGAAATGACTCAACG5- CACATCCAACGAATCACCTCACCGTTATCGTGACTCAC
32、TTTCTTTCGCATCGCCGAAGTGCCATAAAAAATATTTTTT5- TGCGAACAAAAGAGTCATTACAACGAGGAAATAGAAGAAAATGAAAAATTTTCGACAAAATGTATAGTCATTTCTATC5- ACAAAGGTACCTTCCTGGCCAATCTCACAGATTTAATATAGTAAATTGTCATGCATATGACTCATCCCGAACATGAAA5- ATTGATTGACTCATTTTCCTCTGACTACTACCAGTTCAAAATGTTAGAGAAAAATAGAAAAGCAGAAAAAATAAATAA5- GGCGCCACAGTCCG
33、CGTTTGGTTATCCGGCTGACTCATTCTGACTCTTTTTTGGAAAGTGTGGCATGTGCTTCACACAAAAAGAGTCAAAATGACTCAAAGTGAGTCAAAAAGAGTCAGGATGAGTCAAAATGAGTCAGAATGAGTCAAAAAGAGTCA*MAP score = 20.37 (maximum)HIS7 ARO4ILV6THR4ARO1HOM2PRO3AlignACE ExampleThe Target Motif5- TCTCTCTCCACGGCTAATTAGGTGATCATGAAAAAATGAAAAATTCATGAGAAAAGAGTCAGAC
34、ATCGAAACATACAT5- ATGGCAGAATCACTTTAAAACGTGGCCCCACCCGCTGCACCCTGTGCATTTTGTACGTTACTGCGAAATGACTCAACG5- CACATCCAACGAATCACCTCACCGTTATCGTGACTCACTTTCTTTCGCATCGCCGAAGTGCCATAAAAAATATTTTTT5- TGCGAACAAAAGAGTCATTACAACGAGGAAATAGAAGAAAATGAAAAATTTTCGACAAAATGTATAGTCATTTCTATC5- ACAAAGGTACCTTCCTGGCCAATCTCACAGATTTAATATA
35、GTAAATTGTCATGCATATGACTCATCCCGAACATGAAA5- ATTGATTGACTCATTTTCCTCTGACTACTACCAGTTCAAAATGTTAGAGAAAAATAGAAAAGCAGAAAAAATAAATAA*TGAAAAATTCGACATCGAAAGCACTTCGGCGAGTCATTACGTAAATTGTCCCACAGTCCGTGTGAAGCAC5- TCTCTCTCCACGGCTAATTAGGTGATCATGAAAAAATGAAAAATTCATGAGAAAAGAGTCAGACATCGAAACATACAT5- ATGGCAGAATCACTTTAAAACGTGGC
36、CCCACCCGCTGCACCCTGTGCATTTTGTACGTTACTGCGAAATGACTCAACG5- CACATCCAACGAATCACCTCACCGTTATCGTGACTCACTTTCTTTCGCATCGCCGAAGTGCCATAAAAAATATTTTTT5- TGCGAACAAAAGAGTCATTACAACGAGGAAATAGAAGAAAATGAAAAATTTTCGACAAAATGTATAGTCATTTCTATC5- GGCGCCACAGTCCGCGTTTGGTTATCCGGCTGACTCATTCTGACTCTTTTTTGGAAAGTGTGGCATGTGCTTCACACA*TGAA
37、AAATTCGACATCGAAAGCACTTCGGCGAGTCATTACGTAAATTGTCCCACAGTCCGTGTGAAGCACMAP score = -10.0HIS7 ARO4ILV6THR4ARO1HOM2PRO3AlignACE ExampleInitial Seeding5- TCTCTCTCCACGGCTAATTAGGTGATCATGAAAAAATGAAAAATTCATGAGAAAAGAGTCAGACATCGAAACATACAT5- ATGGCAGAATCACTTTAAAACGTGGCCCCACCCGCTGCACCCTGTGCATTTTGTACGTTACTGCGAAATGACT
38、CAACG5- CACATCCAACGAATCACCTCACCGTTATCGTGACTCACTTTCTTTCGCATCGCCGAAGTGCCATAAAAAATATTTTTT5- TGCGAACAAAAGAGTCATTACAACGAGGAAATAGAAGAAAATGAAAAATTTTCGACAAAATGTATAGTCATTTCTATC5- ACAAAGGTACCTTCCTGGCCAATCTCACAGATTTAATATAGTAAATTGTCATGCATATGACTCATCCCGAACATGAAA5- ATTGATTGACTCATTTTCCTCTGACTACTACCAGTTCAAAATGTTAGAG
39、AAAAATAGAAAAGCAGAAAAAATAAATAA5- GGCGCCACAGTCCGCGTTTGGTTATCCGGCTGACTCATTCTGACTCTTTTTTGGAAAGTGTGGCATGTGCTTCACACA*TGAAAAATTCGACATCGAAAGCACTTCGGCGAGTCATTACGTAAATTGTCCCACAGTCCGTGTGAAGCACAdd?*TGAAAAATTCGACATCGAAAGCACTTCGGCGAGTCATTACGTAAATTGTCCCACAGTCCGTGTGAAGCACTCTCTCTCCAHow much better is the alignment w
40、ith this site as opposed to without?HIS7 ARO4ILV6THR4ARO1HOM2PRO3AlignACE ExampleSampling5- TCTCTCTCCACGGCTAATTAGGTGATCATGAAAAAATGAAAAATTCATGAGAAAAGAGTCAGACATCGAAACATACAT5- ATGGCAGAATCACTTTAAAACGTGGCCCCACCCGCTGCACCCTGTGCATTTTGTACGTTACTGCGAAATGACTCAACG5- CACATCCAACGAATCACCTCACCGTTATCGTGACTCACTTTCTTTC
41、GCATCGCCGAAGTGCCATAAAAAATATTTTTT5- TGCGAACAAAAGAGTCATTACAACGAGGAAATAGAAGAAAATGAAAAATTTTCGACAAAATGTATAGTCATTTCTATC5- ACAAAGGTACCTTCCTGGCCAATCTCACAGATTTAATATAGTAAATTGTCATGCATATGACTCATCCCGAACATGAAA5- ATTGATTGACTCATTTTCCTCTGACTACTACCAGTTCAAAATGTTAGAGAAAAATAGAAAAGCAGAAAAAATAAATAA5- GGCGCCACAGTCCGCGTTTGGT
42、TATCCGGCTGACTCATTCTGACTCTTTTTTGGAAAGTGTGGCATGTGCTTCACACA*TGAAAAATTCGACATCGAAAGCACTTCGGCGAGTCATTACGTAAATTGTCCCACAGTCCGTGTGAAGCACAdd?*TGAAAAATTCGACATCGAAAGCACTTCGGCGAGTCATTACGTAAATTGTCCCACAGTCCGTGTGAAGCACHow much better is the alignment with this site as opposed to without?Remove.ATGAAAAAATHIS7 ARO4IL
43、V6THR4ARO1HOM2PRO3AlignACE ExampleContinued Sampling5- TCTCTCTCCACGGCTAATTAGGTGATCATGAAAAAATGAAAAATTCATGAGAAAAGAGTCAGACATCGAAACATACAT5- ATGGCAGAATCACTTTAAAACGTGGCCCCACCCGCTGCACCCTGTGCATTTTGTACGTTACTGCGAAATGACTCAACG5- CACATCCAACGAATCACCTCACCGTTATCGTGACTCACTTTCTTTCGCATCGCCGAAGTGCCATAAAAAATATTTTTT5- TG
44、CGAACAAAAGAGTCATTACAACGAGGAAATAGAAGAAAATGAAAAATTTTCGACAAAATGTATAGTCATTTCTATC5- ACAAAGGTACCTTCCTGGCCAATCTCACAGATTTAATATAGTAAATTGTCATGCATATGACTCATCCCGAACATGAAA5- ATTGATTGACTCATTTTCCTCTGACTACTACCAGTTCAAAATGTTAGAGAAAAATAGAAAAGCAGAAAAAATAAATAA5- GGCGCCACAGTCCGCGTTTGGTTATCCGGCTGACTCATTCTGACTCTTTTTTGGAAAGT
45、GTGGCATGTGCTTCACACA*GACATCGAAAGCACTTCGGCGAGTCATTACGTAAATTGTCCCACAGTCCGTGTGAAGCACAdd?*TGAAAAATTCGACATCGAAAGCACTTCGGCGAGTCATTACGTAAATTGTCCCACAGTCCGTGTGAAGCACHow much better is the alignment with this site as opposed to without?HIS7 ARO4ILV6THR4ARO1HOM2PRO3AlignACE ExampleContinued Sampling5- TCTCTCTCC
46、ACGGCTAATTAGGTGATCATGAAAAAATGAAAAATTCATGAGAAAAGAGTCAGACATCGAAACATACAT5- ATGGCAGAATCACTTTAAAACGTGGCCCCACCCGCTGCACCCTGTGCATTTTGTACGTTACTGCGAAATGACTCAACG5- CACATCCAACGAATCACCTCACCGTTATCGTGACTCACTTTCTTTCGCATCGCCGAAGTGCCATAAAAAATATTTTTT5- TGCGAACAAAAGAGTCATTACAACGAGGAAATAGAAGAAAATGAAAAATTTTCGACAAAATGTATA
47、GTCATTTCTATC5- ACAAAGGTACCTTCCTGGCCAATCTCACAGATTTAATATAGTAAATTGTCATGCATATGACTCATCCCGAACATGAAA5- ATTGATTGACTCATTTTCCTCTGACTACTACCAGTTCAAAATGTTAGAGAAAAATAGAAAAGCAGAAAAAATAAATAA5- GGCGCCACAGTCCGCGTTTGGTTATCCGGCTGACTCATTCTGACTCTTTTTTGGAAAGTGTGGCATGTGCTTCACACA*GACATCGAAAGCACTTCGGCGAGTCATTACGTAAATTGTCCCAC
48、AGTCCGTGTGAAGCAC* *GACATCGAAACGCACTTCGGCGGAGTCATTACAGTAAATTGTCACCACAGTCCGCTGTGAAGCACAHow much better is the alignment with this new column structure?HIS7 ARO4ILV6THR4ARO1HOM2PRO3AlignACE ExampleColumn Sampling5- TCTCTCTCCACGGCTAATTAGGTGATCATGAAAAAATGAAAAATTCATGAGAAAAGAGTCAGACATCGAAACATACAT5- ATGGCAG
49、AATCACTTTAAAACGTGGCCCCACCCGCTGCACCCTGTGCATTTTGTACGTTACTGCGAAATGACTCAACG5- CACATCCAACGAATCACCTCACCGTTATCGTGACTCACTTTCTTTCGCATCGCCGAAGTGCCATAAAAAATATTTTTT5- TGCGAACAAAAGAGTCATTACAACGAGGAAATAGAAGAAAATGAAAAATTTTCGACAAAATGTATAGTCATTTCTATC5- ACAAAGGTACCTTCCTGGCCAATCTCACAGATTTAATATAGTAAATTGTCATGCATATGACTCA
50、TCCCGAACATGAAA5- ATTGATTGACTCATTTTCCTCTGACTACTACCAGTTCAAAATGTTAGAGAAAAATAGAAAAGCAGAAAAAATAAATAA5- GGCGCCACAGTCCGCGTTTGGTTATCCGGCTGACTCATTCTGACTCTTTTTTGGAAAGTGTGGCATGTGCTTCACACAAAAAGAGTCAAAATGACTCAAAGTGAGTCAAAAAGAGTCAGGATGAGTCAAAATGAGTCAGAATGAGTCAAAAAGAGTCA*MAP score = 20.37HIS7 ARO4ILV6THR4ARO1HOM2P
51、RO3AlignACE ExampleThe Best Motif5- TCTCTCTCCACGGCTAATTAGGTGATCATGAAAAAATGAAAAATTCATGAGAAAAXAGTCAGACATCGAAACATACAT5- ATGGCAGAATCACTTTAAAACGTGGCCCCACCCGCTGCACCCTGTGCATTTTGTACGTTACTGCGAAATXACTCAACG5- CACATCCAACGAATCACCTCACCGTTATCGTGACTXACTTTCTTTCGCATCGCCGAAGTGCCATAAAAAATATTTTTT5- TGCGAACAAAAXAGTCATTAC
52、AACGAGGAAATAGAAGAAAATGAAAAATTTTCGACAAAATGTATAGTCATTTCTATC5- ACAAAGGTACCTTCCTGGCCAATCTCACAGATTTAATATAGTAAATTGTCATGCATATGACTXATCCCGAACATGAAA5- ATTGATTGACTXATTTTCCTCTGACTACTACCAGTTCAAAATGTTAGAGAAAAATAGAAAAGCAGAAAAAATAAATAA5- GGCGCCACAGTCCGCGTTTGGTTATCCGGCTGACTXATTCTGACTXTTTTTTGGAAAGTGTGGCATGTGCTTCACACA
53、AAAAGAGTCAAAATGACTCAAAGTGAGTCAAAAAGAGTCAGGATGAGTCAAAATGAGTCAGAATGAGTCAAAAAGAGTCA*HIS7 ARO4ILV6THR4ARO1HOM2PRO3 Take the best motif found after a prescribed number of random seedings. Select the strongest position of the motif. Mark these sites in the input sequence, and do not allow future motifs to
54、 sample those sites. Continue sampling.AlignACE ExampleMasking (old way)5- TCTCTCTCCACGGCTAATTAGGTGATCATGAAAAAATGAAAAATTCATGAGAAAAGAGTCAGACATCGAAACATACAT5- ATGGCAGAATCACTTTAAAACGTGGCCCCACCCGCTGCACCCTGTGCATTTTGTACGTTACTGCGAAATGACTCAACG5- CACATCCAACGAATCACCTCACCGTTATCGTGACTCACTTTCTTTCGCATCGCCGAAGTGCCA
55、TAAAAAATATTTTTT5- TGCGAACAAAAGAGTCATTACAACGAGGAAATAGAAGAAAATGAAAAATTTTCGACAAAATGTATAGTCATTTCTATC5- ACAAAGGTACCTTCCTGGCCAATCTCACAGATTTAATATAGTAAATTGTCATGCATATGACTCATCCCGAACATGAAA5- ATTGATTGACTCATTTTCCTCTGACTACTACCAGTTCAAAATGTTAGAGAAAAATAGAAAAGCAGAAAAAATAAATAA5- GGCGCCACAGTCCGCGTTTGGTTATCCGGCTGACTCATT
56、CTGACTCTTTTTTGGAAAGTGTGGCATGTGCTTCACACAAAAAGAGTCAAAATGACTCAAAGTGAGTCAAAAAGAGTCAGGATGAGTCAAAATGAGTCAGAATGAGTCAAAAAGAGTCA*HIS7 ARO4ILV6THR4ARO1HOM2PRO3 Maintain a list of all distinct motifs found. Use CompareACE to compare subsequent motifs to those already found. Quickly reject weaker, but similar m
57、otifs.AlignACE ExampleMasking (new way)B,G = standard Beta & Gamma functionsN = number of aligned sites; T = number of total possible sitesFjb = number of occurrences of base b at position j (F = sum)Gb = background genomic frequency for base bbb = n x Gb for n pseudocounts (b = sum)W = width of mot
58、if; C = number of columns in motif (W=C)MAP ScoreN = number of aligned sitesR = overrepresentation of those sites. MAP N log RMAP Score188.38578.116320.620128.1044117.52831.10173.42768.2458619.37955.099389.42922.78973 MAP score MotifAlignACE Example: Final Results (alignment of upstream regions from
59、 116 amino acid biosynthetic genes in S. cerevisiae)Indices used to evaluate motif significanceGroup specificity Functional enrichment Positional biasPalindromicityKnown motifs (CompareACE)Searching for additional motif instances in the entire genome sequenceSearches over the entire genome for addit
60、ional high-scoring instances of the motif are done using the ScanACE program, which uses the Berg & von Hippel weight matrix (1987). M = length of binding site motifB = base at position l within the motifnlB= number of occurrences of base B at position l in the input alignmentnlO= number of occurren
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025版商业建筑外墙改造与拆除一体化服务合同3篇
- 2025版土地承包经营权转包合同(含农业保险)2篇
- 二零二五版物流运输保证合同印花税缴纳规定2篇
- 2025年度木材产业链上下游合作发展合同4篇
- 2025年宽带网络安全协约
- 2025年压疮预防护理服务合同
- 2025年委托招标合同
- 2025年卵巢囊肿手术协议
- 2025年度木材加工行业安全监管合作协议3篇
- 2025年加盟运营推广合作协议
- 眼的解剖结构与生理功能课件
- 小学网管的工作总结
- 2024年银行考试-兴业银行笔试参考题库含答案
- 泵站运行管理现状改善措施
- 2024届武汉市部分学校中考一模数学试题含解析
- SYT 0447-2014《 埋地钢制管道环氧煤沥青防腐层技术标准》
- 浙教版七年级下册科学全册课件
- 弧度制及弧度制与角度制的换算
- 瓦楞纸箱计算公式测量方法
- DB32-T 4004-2021水质 17种全氟化合物的测定 高效液相色谱串联质谱法-(高清现行)
- DB15T 2724-2022 羊粪污收集处理技术规范
评论
0/150
提交评论