![商业应用统计(英文版)ch6_第1页](http://file3.renrendoc.com/fileroot_temp3/2022-7/4/0502731f-395d-493a-8e65-e04c3ac91b7e/0502731f-395d-493a-8e65-e04c3ac91b7e1.gif)
![商业应用统计(英文版)ch6_第2页](http://file3.renrendoc.com/fileroot_temp3/2022-7/4/0502731f-395d-493a-8e65-e04c3ac91b7e/0502731f-395d-493a-8e65-e04c3ac91b7e2.gif)
![商业应用统计(英文版)ch6_第3页](http://file3.renrendoc.com/fileroot_temp3/2022-7/4/0502731f-395d-493a-8e65-e04c3ac91b7e/0502731f-395d-493a-8e65-e04c3ac91b7e3.gif)
![商业应用统计(英文版)ch6_第4页](http://file3.renrendoc.com/fileroot_temp3/2022-7/4/0502731f-395d-493a-8e65-e04c3ac91b7e/0502731f-395d-493a-8e65-e04c3ac91b7e4.gif)
![商业应用统计(英文版)ch6_第5页](http://file3.renrendoc.com/fileroot_temp3/2022-7/4/0502731f-395d-493a-8e65-e04c3ac91b7e/0502731f-395d-493a-8e65-e04c3ac91b7e5.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、Copyright 2011John Wiley & Sons, Inc. Understand concepts of the continuous distribution, especially the normal distribution.Recognize normal distribution problems, and know how to solve them.Decide when to use the normal distribution to approximate binomial distribution problems, and know how to wo
2、rk them.Decide when to use the exponential distribution to solve problems in business, and know how to work them.Copyright 2011John Wiley & Sons, Inc. 2Learning ObjectivesContinuous DistributionsContinuous distributionsContinuous distributions are constructed from continuous random variables which c
3、an be any values over a given intervalWith continuous distributions, probabilities of outcomes occurring between particular points are determined by calculating the area under the curve between these pointsUnlike discrete probability distributions, the probability of being exactly at a given point i
4、s 0 (since you can measure it more precisely)Copyright 2011 John Wiley & Sons, Inc. 3Properties of the Normal DistributionCharacteristics of the normal distribution:Continuous distribution - Line does not breakBell-shaped, symmetrical distributionRanges from - to Mean = median = modeArea under the c
5、urve = total probability = 168% of data are within one std dev of mean, 95% within two std devs, and 99.7% within three std devsCopyright 2011 John Wiley & Sons, Inc. 4Probability Density Function ofthe Normal DistributionThere are a number of different normal distributions, they are characterized b
6、y the mean and the std devCopyright 2011 John Wiley & Sons, Inc. 5Probability Density Function ofthe Normal Distribution. . . 2.71828 . . . 3.14159 = Xof dev std Xof mean eWherexxfe:21)(221XCopyright 2011 John Wiley & Sons, Inc. 6Rather than create a different table for every normal distribution (wi
7、th different mean and std devs), we can calculate a standardized normal distribution, called ZA z-score gives the number of standard deviations that a value x is above the mean.Z distribution is normal distribution with a mean of 0 and a std dev of 1 Normal Distribution Calculating ProbabilitiesCopy
8、right 2011 John Wiley & Sons, Inc. 7xzStandardized Normal Distribution - ContinuedZ distribution probability values are given in table A5 or can be calculated using softwareTable A5 gives the total area under the Z curve between 0 and any point on the positive Z axisSince the curve is symmetric, the
9、 area under the curve between Z and 0 is the same whether the Z curve is positive or negativeCopyright 2011 John Wiley & Sons, Inc. 8Z TableSecond Decimal Place in Z Z0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.000.00000.00400.00800.01200.01600.01990.02390.02790.03190.03590.100.03980.04380.0
10、4780.05170.05570.05960.06360.06750.07140.07530.200.07930.08320.08710.09100.09480.09870.10260.10640.11030.11410.300.11790.12170.12550.12930.13310.13680.14060.14430.14800.15170.900.31590.31860.32120.32380.32640.32890.33150.33400.33650.33891.000.34130.34380.34610.34850.35080.35310.35540.35770.35990.362
11、11.100.36430.36650.36860.37080.37290.37490.37700.37900.38100.38301.200.38490.38690.38880.39070.39250.39440.39620.39800.39970.40152.000.47720.47780.47830.47880.47930.47980.48030.48080.48120.48173.000.49870.49870.49870.49880.49880.49890.49890.49890.49900.49903.400.49970.49970.49970.49970.49970.49970.4
12、9970.49970.49970.49983.500.49980.49980.49980.49980.49980.49980.49980.49980.49980.4998Copyright 2011 John Wiley & Sons, Inc. 9Table Lookup of a StandardNormal Probability-3-2-10123PZ().010 3413 Z0.00 0.01 0.02 0.000.00000.00400.00800.100.03980.04380.04780.200.07930.08320.08711.000.34130.34380.34611.1
13、00.36430.36650.36861.200.38490.38690.3888Copyright 2011 John Wiley & Sons, Inc. 10Applying the Z FormulaX is normally distributed with = 485, and =105PXPZ()(.) .48560001103643For X = 485 ,Z=X-485 485105010. 1105485600-X=Z600, = XFor Z0.00 0.01 0.02 0.000.00000.00400.00800.100.03980.04380.04781.000.3
14、4130.34380.34611.100.36430.36650.36861.200.38490.38690.3888Copyright 2011 John Wiley & Sons, Inc. 11Applying the Z Formula7123.)56. 0()550(100= and 494,= with ddistributenormally is XZPXP56. 0100494550-X=Z550 = XFor Copyright 2011 John Wiley & Sons, Inc. 12Applying the Z Formula0197.)06. 2()700(100=
15、 and 494,= with ddistributenormally is XZPXP06. 2100494700-X=Z700 = XFor Copyright 2011 John Wiley & Sons, Inc. 13Applying the Z Formula94. 1100494300-X=Z300 = XFor 8292.)06. 194. 1()600300(100= and 494,= with ddistributenormally is XZPXP06. 1100494600-X=Z600 = XFor Copyright 2011 John Wiley & Sons,
16、 Inc. 14Demonstration Problem 6.9These types of problems can be solved quite easily with the appropriate technology. The output shows the MINITAB solution. Suppose we know that X is normally distributed with mean 3.58 and std dev 1.04, and we want P(X3.10172), we calculateCopyright 2011 John Wiley &
17、 Sons, Inc. 15Normal Approximation of theBinomial DistributionFor certain types of binomial distributions, thenormal distribution can be used to approximate the probabilitiesAt large sample sizes, binomial distributions approach the normal distribution in shape regardless of the value of pThe normal
18、 distribution is a good approximate for binomial distribution problems for large values of nCopyright 2011 John Wiley & Sons, Inc. 16Normal Approximation of Binomial:Parameter ConversionConversion equationsConversion example:n pn p q55. 3)70)(.30)(.60(18)30)(.60().30. and 60|25(find on,distributi bi
19、nomial a has X Given thatqpnpnpnXPCopyright 2011 John Wiley & Sons, Inc. 1765.28335. 7365.1018)55. 3(31830102030405060n70Normal Approximation of Binomial:Interval CheckCopyright 2011 John Wiley & Sons, Inc. 18Normal Approximation of Binomial:Correcting for Continuity Values Being DeterminedCorrectio
20、nX X X X X X +.50-.50-.50+.05-.50 and +.50+.50 and -.50The binomial probability , and is approximated by the normal probabilityP(X24.5| and P Xnp(|.).).256030183 55Copyright 2011 John Wiley & Sons, Inc. 19252627282930313233Total0.01670.00960.00520.00260.00120.00050.00020.00010.00000.0361XP(X)The normal approximation,P(X24.5| and 18355245 1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 提高销售管理能力的培训课程
- 2025天津市农资买卖合同范文
- 家居装饰设计与施工方案
- 劳动合同知识产权保密条款
- 房屋中介买卖服务合同范本
- 2025《代理企业所得税年度纳税申报合同》(合同模版)
- 的买卖合同范本
- 社工劳动合同
- 2025工程外包合同模板
- 农业机械设备采购安装合同
- 物业公司介绍
- JTGT H21-2011 公路桥梁技术状况评定标准
- 卖花生混声合唱简谱
- 【永辉超市公司员工招聘问题及优化(12000字论文)】
- 汽油安全技术说明书(MSDS)
- 中国直销发展四个阶段解析
- 2024届浙江省宁波市镇海区镇海中学高一物理第一学期期末质量检测试题含解析
- 部编版语文四年级下册 教材解读
- 《一次函数与方程、不等式》说课稿
- 动火作业安全管理要求及控制措施
- 诗豪刘禹锡一生部编教材PPT
评论
0/150
提交评论