![圆的有关性质(4)_第1页](http://file3.renrendoc.com/fileroot_temp3/2022-7/2/ed7d5356-07bc-43e1-b0d8-f07f5a7a3ddd/ed7d5356-07bc-43e1-b0d8-f07f5a7a3ddd1.gif)
![圆的有关性质(4)_第2页](http://file3.renrendoc.com/fileroot_temp3/2022-7/2/ed7d5356-07bc-43e1-b0d8-f07f5a7a3ddd/ed7d5356-07bc-43e1-b0d8-f07f5a7a3ddd2.gif)
![圆的有关性质(4)_第3页](http://file3.renrendoc.com/fileroot_temp3/2022-7/2/ed7d5356-07bc-43e1-b0d8-f07f5a7a3ddd/ed7d5356-07bc-43e1-b0d8-f07f5a7a3ddd3.gif)
![圆的有关性质(4)_第4页](http://file3.renrendoc.com/fileroot_temp3/2022-7/2/ed7d5356-07bc-43e1-b0d8-f07f5a7a3ddd/ed7d5356-07bc-43e1-b0d8-f07f5a7a3ddd4.gif)
![圆的有关性质(4)_第5页](http://file3.renrendoc.com/fileroot_temp3/2022-7/2/ed7d5356-07bc-43e1-b0d8-f07f5a7a3ddd/ed7d5356-07bc-43e1-b0d8-f07f5a7a3ddd5.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、24.1圆的有关性质(第圆的有关性质(第4课时)课时)九年级上册九年级上册 本课本课是在学习了垂径定理、圆心角及弧、弦、圆心角是在学习了垂径定理、圆心角及弧、弦、圆心角的关系的基础上探究同弧(或等弧)所对圆周角之间的关系的基础上探究同弧(或等弧)所对圆周角之间以及圆周角与圆心角之间的数量关系以及圆周角与圆心角之间的数量关系课件说课件说明明 学习目标:学习目标:1了解并证明圆周角定理及其推论;了解并证明圆周角定理及其推论;2经历探究同弧(或等弧)所对圆周角与圆心角之经历探究同弧(或等弧)所对圆周角与圆心角之 间的关系的过程,进一步体会分类讨论、转化的间的关系的过程,进一步体会分类讨论、转化的 思
2、想方法思想方法 学习重点:学习重点:圆周角定理圆周角定理课件说课件说明明 1思考和练习思考和练习图中图中ACB 的顶点和边有哪些特点?的顶点和边有哪些特点?AOBC顶点顶点在圆上,并且在圆上,并且两边两边都和圆相交的角叫圆周角都和圆相交的角叫圆周角如:如:ACB教科书教科书 88 页练习页练习 11思考和思考和练习练习图中图中ACB 和和AOB 有怎样的关系?有怎样的关系?2探究探究BCOAAOBACB212探究探究BCOABCOA(1)在圆上任取)在圆上任取 ,画出圆心角,画出圆心角BOC 和圆周角和圆周角BAC,圆心角与圆周角有几种位置关系?,圆心角与圆周角有几种位置关系?BCBCOA(2
3、)如图,如何证明一条弧所对的圆周角等于它)如图,如何证明一条弧所对的圆周角等于它所对的圆心角的一半?所对的圆心角的一半?3证明猜想证明猜想BCOAOA=OC,A=C又BOC=A+C,BOCBAC21我们来分析上页的前两种情况,第三种情况请同学我们来分析上页的前两种情况,第三种情况请同学们完成证明们完成证明(3)如图,如何证明一条弧所对的圆周角等于它)如图,如何证明一条弧所对的圆周角等于它所对的圆心角的一半?所对的圆心角的一半?D3证明猜想证明猜想BCOA证明:如图,连接证明:如图,连接 AO 并延长交并延长交 O 于点于点 DOA=OB,BAD=B又BOD=BAD+B,BODBAD21CODC
4、AD21同理,同理,BOCCADBADBAC213证明猜想证明猜想 圆周角定理:圆周角定理:一条弧所对的圆周角等于它所对的圆心角的一半一条弧所对的圆周角等于它所对的圆心角的一半思考:思考:一条弧所对的圆周角之间有什么关系?同弧或等弧一条弧所对的圆周角之间有什么关系?同弧或等弧所对的圆周角之间有什么关系?所对的圆周角之间有什么关系?同弧或等弧所对的圆周角相等同弧或等弧所对的圆周角相等4探究探究ADBCO思考:思考:半圆(或直径)所对的圆周角有什么特殊性?半圆(或直径)所对的圆周角有什么特殊性?半圆(或直径)所对的圆周角是直角,半圆(或直径)所对的圆周角是直角,90的圆周的圆周角所对的弦是直径角所
5、对的弦是直径.4探究探究C1AOBC2C3如图,如图, O 的直径的直径 AB 为为 10 cm,弦,弦 AC 为为 6 cm,ACB 的平分线交的平分线交 O 于点于点 D,求,求 BC,AD,BD 的长的长5应用应用解:连接解:连接 OD,AD,BD, ACBDO22ACAB 22610 AB 是是 O 的直径,的直径,ACB=ADB=90在在 RtABC 中,中,BC= =8(cm)如图,如图, O 的直径的直径 AB 为为 10 cm,弦,弦 AC 为为 6 cm,ACB 的平分线交的平分线交 O 于点于点 D,求,求 BC,AD,BD 的长的长5应用应用ACBDOCD 平分平分ACB,ACD=BCD, AOD=BOD AD=BD 在在 RtABD 中,中, AD2+BD2=AB2 ,AD=BD=AB22=(cm)25(1)本节课学习了哪些主要内容?)本节课学习了哪些主要内容?(2)我们是怎样探究圆周角定理的?在证明过程)我们是
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 工龄重新认定申请书
- DB37-T 4603-2023 医养结合机构心理支持服务指南
- 内部调职申请书
- 代理排长申请书
- 现代企业如何通过管理学提升管理效能
- 秩序部转正申请书
- 2024-2025学年高中历史第三章北魏孝文帝改革第三节孝文帝改革的历史作用学案北师大版选修1
- 2024-2025学年新教材高中数学第十章概率10.1.1有限样本空间与随机事件10.1.2事件的关系和运算应用案巩固提升新人教A版必修第二册
- 合并执行申请书
- 商户退场申请书
- 2025年中华工商时报社事业单位招聘12人历年高频重点模拟试卷提升(共500题附带答案详解)
- 安全生产事故调查与案例分析(第3版)课件 吕淑然 第1-4章 绪论-应急预案编制与应急管理
- Starter Unit 1 Hello!说课稿2024-2025学年人教版英语七年级上册
- 2025年初中语文:春晚观后感三篇
- Unit 7 第3课时 Section A (Grammar Focus -4c)(导学案)-【上好课】2022-2023学年八年级英语下册同步备课系列(人教新目标Go For It!)
- 《教育强国建设规划纲要(2024-2035年)》解读讲座
- 2024-2025学年广东省深圳市宝安区高一(上)期末数学试卷(含答案)
- 《基于新课程标准的初中数学课堂教学评价研究》
- 省级产业园区基础设施项目可行性研究报告
- 2025年中国东方航空招聘笔试参考题库含答案解析
- 《微生物燃料电池MF》课件
评论
0/150
提交评论