第五章 弯曲内力1_第1页
第五章 弯曲内力1_第2页
第五章 弯曲内力1_第3页
第五章 弯曲内力1_第4页
第五章 弯曲内力1_第5页
已阅读5页,还剩43页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、1上海上海工程技术大学基础教学学院工程力学部工程技术大学基础教学学院工程力学部291 工程实例、基本概念92 弯曲内力与内力图93 剪力、弯矩与分布荷载间的关系及应用94 弯曲正应力及强度计算95 弯曲剪应力及强度计算58 提高弯曲强度的措施弯曲应力部分小结弯曲应力部分小结 作业 弯曲内力部分小结弯曲内力部分小结39191 工程实例、基本概念一、实例一、实例工厂厂房的天车大梁:工厂厂房的天车大梁:火车的轮轴:火车的轮轴:FFFFFF4楼房的横梁:楼房的横梁:阳台的挑梁:阳台的挑梁:56二、二、弯曲的概念弯曲的概念:受力特点受力特点作用于杆件上的作用于杆件上的外力外力都都垂直垂直于杆的于杆的轴线

2、轴线。变形特点变形特点杆轴线由杆轴线由直线直线变为一条平面的变为一条平面的曲线曲线。三、梁的概念:主要产生弯曲变形的杆。三、梁的概念:主要产生弯曲变形的杆。四、平面弯曲的概念:四、平面弯曲的概念:qPMARBN7受力特点受力特点作用于杆件上的外力都垂直于杆的轴线,且都在作用于杆件上的外力都垂直于杆的轴线,且都在 梁的纵向对称平面内(通过或平行形心主轴上且过梁的纵向对称平面内(通过或平行形心主轴上且过 弯曲中心)弯曲中心)。变形特点变形特点杆的轴线在梁的纵向对称面内由直线变为一条平杆的轴线在梁的纵向对称面内由直线变为一条平 面曲线。面曲线。纵向对称面纵向对称面MF1F2q平面弯曲平面弯曲8五、弯

3、曲的分类:五、弯曲的分类:1 1、按杆的形状分、按杆的形状分直杆直杆的弯曲;曲杆的弯曲。的弯曲;曲杆的弯曲。2 2、按杆的长短分、按杆的长短分细长杆细长杆的弯曲;短粗杆的弯曲。的弯曲;短粗杆的弯曲。3 3、按杆的横截面有无对称轴分、按杆的横截面有无对称轴分 有对称轴有对称轴的弯曲;无对称轴的弯曲。的弯曲;无对称轴的弯曲。4 4、按杆的变形分、按杆的变形分平面弯曲平面弯曲;斜弯曲;斜弯曲;弹性弯曲弹性弯曲;塑性弯曲。;塑性弯曲。5 5、按杆的横截面上的应力分、按杆的横截面上的应力分纯弯曲;横力弯曲纯弯曲;横力弯曲。9(一)、简化的原则(一)、简化的原则:便于计算,且符合实际要求。:便于计算,且符

4、合实际要求。(二)、梁的简化(二)、梁的简化:以梁的轴线代替梁本身。:以梁的轴线代替梁本身。(三)、荷载的简化:(三)、荷载的简化:1 1、集中力、集中力荷载作用的范围与整个杆的长度相比非常小时。荷载作用的范围与整个杆的长度相比非常小时。2 2、分布力、分布力荷载作用的范围与整个杆的长度相比不很小时。荷载作用的范围与整个杆的长度相比不很小时。3 3、集中力偶(分布力偶)、集中力偶(分布力偶)作用于杆的纵向对称面内的力偶。作用于杆的纵向对称面内的力偶。(四)、支座的简化:(四)、支座的简化:1 1、固定端、固定端有三个约束反力。有三个约束反力。FXAFAYMA六、梁、荷载及支座的简化六、梁、荷载

5、及支座的简化AA102 2、固定铰支座、固定铰支座 有二个约束反力。有二个约束反力。3 3、可动铰支座、可动铰支座 有一个约束反力。有一个约束反力。FAYFAXFAY11(五)、梁的三种基本形式:(五)、梁的三种基本形式:q(x) 分布力分布力1 1、悬臂梁:、悬臂梁:2 2、简支梁:、简支梁:3 3、外伸梁:、外伸梁: 集中力集中力Fq 均布力均布力LLLL(L称为梁的跨长)称为梁的跨长)M 集中力偶集中力偶12(六)、静定梁与超静定梁(六)、静定梁与超静定梁静定梁静定梁:由静力学方程可求:由静力学方程可求出支反力。出支反力。超静定梁超静定梁:由静力学方程不:由静力学方程不可求出支反力或不能

6、求出全可求出支反力或不能求出全部支反力。部支反力。PPPARPCRBRACB1392 92 弯曲内力与内力图弯曲内力与内力图一、内力的确定(截面法):一、内力的确定(截面法):例例已知:如图,已知:如图,F,a,l。 求:距求:距A端端x处截面上内力。处截面上内力。FAYFAXFBYFABFalAB解:解:求外力求外力0 , 0AXFXFAX =0 以后可省略不求以后可省略不求0 , 0FalFmBYA0F , 0BYAYFFYlalFlFaFAYBY)(F ,mmx14ABFFAYFAXFBYmmx求内力求内力FsMMFs 弯曲构件内力:弯曲构件内力: 剪力剪力,弯矩弯矩。FAYACFBYF

7、ClalFFFAYs)( , 0Y. 0sAYFFxlalFxFMAY)( , 0Cm. 0 xFMAY研究对象:研究对象:m - m 截面的左段:截面的左段:或,研究对象:或,研究对象:m - m 截面的右段:截面的右段: , 0Y. 0BYsFFF , 0Cm. 0)()(MxaFxlFBY,)( lalFFsxlalFM)( sFM15ABFFAYFAXFBYmmxFsMMFs1. 弯矩:弯矩:M 构件受弯时,横截面上构件受弯时,横截面上存在垂直于截面的内力偶矩存在垂直于截面的内力偶矩(弯矩)。(弯矩)。AFAYCFBYFC2. 剪力:剪力:Fs 构件受弯时,横截面上构件受弯时,横截面上

8、存在平行于截面的内力(剪存在平行于截面的内力(剪力)。力)。16二、二、内力的正负规定内力的正负规定: :剪力剪力Fs: : 在保留段内任取一点,如果剪力的方向对其点之在保留段内任取一点,如果剪力的方向对其点之 矩为顺时针的,则此剪力规定为正值,反之为负值。矩为顺时针的,则此剪力规定为正值,反之为负值。弯矩弯矩M: 使梁微段变成上凹下凸形状的为正弯矩;反之为负值。使梁微段变成上凹下凸形状的为正弯矩;反之为负值。Fs(+)Fs(+)Fs()Fs()M(+)M(+)M()M()17三、注意的问题三、注意的问题1 1、在截开面上设正的内力方向。、在截开面上设正的内力方向。2 2、在截开前不能将外力平

9、移或简化。、在截开前不能将外力平移或简化。四、简易法求内力:四、简易法求内力:左上右下剪力为正,左顺右逆弯矩为正左上右下剪力为正,左顺右逆弯矩为正。iSFF(一侧)(一侧),iMM(一侧)。(一侧)。18 例例:求求1-1、2-2截面处的内力。截面处的内力。, 0Y, 0CmqLM1解解qqLab1-11Q1x111,qlxMqLQ2-2qLM2x2q2Q, 0Y, 0Cm qLxaxqM0)(212222 QaxqqL0)(22L)axq Q22(2222)(21qLxaxqM. 01qLQ . 011 qLxM1122191.2kN/m0.8kNAB1.5m 1.5m3m2m1.5m112

10、2 例例 :梁梁1-11-1、2-22-2截面处的内力。截面处的内力。解:解:(1)确定支座反力)确定支座反力RARB032 . 18 . 0, 0BARRY)(9 . 2),(5 . 1kNRkNRBA8 . 01ARQ(2) (2) 1-11-1截面左段右侧截面截面左段右侧截面:065 . 48 . 05 . 132 . 1, 0ABRM5 . 08 . 021ARM8 . 05 . 1)(7 . 0kN)(6 . 2mkN 2-22-2截面右段左侧截面:截面右段左侧截面:9 . 25 . 12 . 12Q)( 1 . 1kN75. 05 . 12 . 15 . 12BRM)(0 . 3m

11、kNRA1Q1M8 . 02Q2MBRq20 例例 :求图所示梁求图所示梁1-11-1、2-22-2截面处的内力。截面处的内力。aaaABCDFa11221.3a0.5aF解:解:(1)确定支座反力)确定支座反力0, 0FRRYCBFRFRBC2,3(2 2)求内力)求内力, ,1-11-1截面取左侧考虑:截面取左侧考虑:FRQB212-22-2截面取右侧考虑:截面取右侧考虑:FQ 202, 0FaaRaFMCBBRCRFaaRMB3 . 01FaaF3 . 0)2(Fa4 . 0aFM5 . 02Fa5 . 0BRFa1Q1M2Q2MFDC21五、剪力方程、弯矩方程五、剪力方程、弯矩方程:剪

12、力、弯矩表达为截面位置剪力、弯矩表达为截面位置x x的函数式的函数式。 Q Q = Q (x= Q (x) 剪力方程, M = M(x) M = M(x) 弯矩方程 注意注意: 不能用一个函数表达的要不能用一个函数表达的要 分段,分段点为集中力作分段,分段点为集中力作 用点、集中力偶作用点、用点、集中力偶作用点、 分布力的起点、终点。分布力的起点、终点。LqAB,)(qxxQ,21)(2qxxM)0(lx )0(lx xAQMQx( (- -) )Mx( (- -) )ql25 . 0 ql22六、剪力图和弯矩图:六、剪力图和弯矩图:剪力、弯矩沿梁轴线变化的图形。剪力、弯矩沿梁轴线变化的图形。

13、七、剪力图、弯矩图绘制的步骤:同轴力图。七、剪力图、弯矩图绘制的步骤:同轴力图。1 1、建立直角坐标系,、建立直角坐标系,2 2、取比例尺,、取比例尺,3 3、按坐标的正负规定画出剪力图和弯矩图。、按坐标的正负规定画出剪力图和弯矩图。xQxM23八、利用剪力方程弯矩方程画出剪力图和弯矩图八、利用剪力方程弯矩方程画出剪力图和弯矩图步骤:步骤:1 1、利用静力方程确定支座反力。、利用静力方程确定支座反力。2 2、根据荷载分段列出剪力方程、弯矩方程。、根据荷载分段列出剪力方程、弯矩方程。3 3、根据剪力方程、弯矩方程判断剪力图、弯矩图的形状、根据剪力方程、弯矩方程判断剪力图、弯矩图的形状 描点绘出剪

14、力图、弯矩图。描点绘出剪力图、弯矩图。4 4、确定最大的剪力值、弯矩值。、确定最大的剪力值、弯矩值。24Fs(x)xM(x)xFFLFFxFAYs)(解解:求支反力求支反力)( )(LxFMxFxMAAY写出内力方程写出内力方程FL MFFAAY ; 根据方程画内力图根据方程画内力图 例例 列出梁内力方程并画出内力图。列出梁内力方程并画出内力图。FAB)0(lx )0(lx FAYMALxsFMF25CFalABbFAYFBYx1解解:1、求约束反力反力lFaFmBYA , 02 2、写出内力方程、写出内力方程FLbFxFAYs)(1)0(1ax 11)(FxLbxM)(1axoAC段:BC段

15、:,)(2FLaFxFBYs)0(2bx ,)(222FxLaxFxMBY)0(2bx 3 3、根据方程画内力图、根据方程画内力图M(x)xFs(x)xFLbFLaFLab 例例 画出梁的内力图。画出梁的内力图。lFFYAYb , 0 x226Fs(x)xFLbFLaCFalABb讨论讨论CC截面剪力图的突变值。截面剪力图的突变值。集中力作用点处剪力图有突变,集中力作用点处剪力图有突变,突变值的大小等于集中力的大突变值的大小等于集中力的大小小。(集中力 F 实际是作用在X微段上)。集中力偶作用点处弯矩图有突集中力偶作用点处弯矩图有突变,突变值的大小等于集中力变,突变值的大小等于集中力偶的大小偶

16、的大小。XFLbFLa27解解:1、支反力2 2、写出内力方程、写出内力方程),(2)(:1kNFxFACAYs1kN/m2kNABC D1m1m2mx1x3x2FAYFBY)( 2);( 20432121, 00212, 0kNFkNFFMFFYBYAYAYBBYAY 例例 画出梁的内力图。画出梁的内力图。),.(2)(111mkNxxFxMAY, 0222)(:2AYsFxFCD) 10(1 x,21)(:333xxFxFBDBY),.(2) 1(2)(222mkNxxFxMAY)20(2 x,2221)(2333333xxxxxFxMBY)20(3 x283、根据方程画内力图1kN/m2

17、kNABC DFAYFBYM(x)xFs(x)x2kN2kN2kN、m 2kN、m).(5.12112)(133mkNxMx)20(22)()20(2)(:)20(2)()20(0)(:) 10(2)()20(, 2)(:32333333222211111xxxxMxxxFBCxxMxxFCDxxxMLxxFACsss,29)3(6)(220 xLLqxFs解:求支反力内力方程3 ; 600Lq FLqFBYAY根据方程画内力图)xL(LxqxM2206)(L33Fs(x)x620Lq320Lqq0L27320Lq)0(lx )0(lx FAYFBYM(x)x30mABC解解:1、求约束反力、

18、求约束反力LmRRAB2 2、写出内力方程、写出内力方程,:1LmRQACA3 3、根据方程画内力图、根据方程画内力图M(x)xm/Lm/2 例例 画出梁的内力图。画出梁的内力图。(AC=CBAC=CB))20(1Lx :BC,111xLmxRMA,222xLmxRMB)20(2Lx m/2ARBRL1x2xAR1Q1M2Q2MBRBA,2LmRQBxQ3193 93 剪力、弯矩与分布荷载间的关系及应用剪力、弯矩与分布荷载间的关系及应用一、一、 剪力、弯矩与分布荷载间的关系剪力、弯矩与分布荷载间的关系1 1、支反力:、支反力:2qlFFBYAYLqRARB2 2、内力方程、内力方程qxqlxQ

19、21)()0(lx 22121)(qxqlxxM)0(lx 3 3、讨论:、讨论:qxqldxxdM21)(qdxxdQ)(x),(xQ)(xqQMARA32对对dx 段进行平衡分析,有:段进行平衡分析,有:0)(d)(d)()(0 xQxQxxqxQY)(dQd)(xxxqdxxq(x)q(x)M(x)+d M(x)Q(x)+dQ(x)Q(x)M(x)dxAy xqxxQdd剪力图上某点处的切线斜率等剪力图上某点处的切线斜率等于该点处荷载集度的大小。于该点处荷载集度的大小。 33q(x)M(x)+d M(x)Q(x)+dQ(x)Fs(x)M(x)dxAy, 0)(iAFm)(d)(dxQxx

20、M弯矩图上某点处的切线斜率等于该点处剪力的大小。弯矩图上某点处的切线斜率等于该点处剪力的大小。)(d)(d22xqxxM0)(d(21)()dQ(-)(d)(2xxqxMxxxMxM34 xqxxQdd)(d)(dxQxxM)(d)(d22xqxxM二、微分关系的应用二、微分关系的应用2 2、分布力、分布力q(x)=q(x)=常数时常数时剪力图为一条斜直线; 弯矩图为一条二次曲线。1 1、分布力、分布力q(x)=0q(x)=0时时剪力图为一条水平线; 弯矩图为一条斜直线。Q图:图:M图:图:(1 1)当分布力的方向向上时)当分布力的方向向上时Q 图:图:M图:图:M(x), 0q剪力图为剪力图

21、为斜向上斜向上的斜直线;的斜直线; 弯矩图为弯矩图为下凸下凸的二次曲线。的二次曲线。354 4、集中力偶处、集中力偶处剪力图无变化;弯矩图有剪力图无变化;弯矩图有突变突变, 突变值的大小等于集中力偶的大小。突变值的大小等于集中力偶的大小。5 5、弯矩极值处、弯矩极值处剪力为零剪力为零的截面、的截面、集中力集中力作用的截面、作用的截面、 集中力偶集中力偶作用的截面。作用的截面。3 3、集中力处、集中力处剪力图有剪力图有突变突变,突变值等于集中力的大小;,突变值等于集中力的大小; 弯矩图有弯矩图有折角折角。(2 2)当分布力的方向向下时)当分布力的方向向下时Q图:图:M图:图:M(x), 0q剪力

22、图为剪力图为斜向下斜向下的斜直线;的斜直线; 弯矩图为弯矩图为上凸上凸的二次曲线。的二次曲线。6 6、支座的转化为、支座的转化为 相当的荷载相当的荷载A0, 0AAMRABC0, 0AAMR0, 0BBMR0CM36 例例 用简易作图法画下列各图示梁的内力图。控制点控制点: :端点、分段点(外力变化点)和驻点(极值点)等端点、分段点(外力变化点)和驻点(极值点)等。四、简易法作内力图法(利用微分规律)四、简易法作内力图法(利用微分规律): : 利用内力和外力的关系及特殊点的内力值来作图的方法。基本步骤基本步骤:1、确定支座反力; 2、利用微分规律判断梁各段内力图的形状; 3、确定控制点内力的数

23、值大小及正负; 4、描点画内力图。37左端点:剪力图有突变,突变值左端点:剪力图有突变,突变值 等于集中力的大小。等于集中力的大小。右端点:弯矩图有突变,突变值右端点:弯矩图有突变,突变值 等于集中力的大小。等于集中力的大小。qa2223qaqaxMaaqaq解解:1、确定支反力(可省略)、确定支反力(可省略)AB:BC:2、画内力图、画内力图Fym223; 0qamFYABCQxQQ, ,0qaqaQc,qaQA右;, 0qq 0,;M, ,2qaMB, 0AMM, ,;5 . 12qaMC,qaQB38Q(x)x2kN2kN解解:1、支反力支反力)( 2);( 20432121, 0021

24、2, 0kNFkNFFMFFYBYAYAYBBYAY2、画内力图、画内力图AC段段:剪力图为一条水平线;剪力图为一条水平线; 弯矩图为一条斜直线弯矩图为一条斜直线BD段段:剪力图为斜向下的斜直线;剪力图为斜向下的斜直线; 弯矩图为上凸的二次曲线。弯矩图为上凸的二次曲线。CD段段:剪力图为零;剪力图为零; 弯矩图为一条水平线。弯矩图为一条水平线。A、C、B 截面剪力图有突变;截面剪力图有突变;突变值的大小为其集中力的值。突变值的大小为其集中力的值。1kN/mABC D2kN2m1m1mFAYFBYM(x)x2kN、m 2kN、m391m4m10kN/m20kN40kN、mCBA解解:1、支反力支

25、反力).(25);(3504405202410, 0041020, 0kNRkNRRMRRYBAABBA2、画内力图、画内力图CA段段:剪力图为一条水平线;剪力图为一条水平线; 弯矩图为一条斜直线弯矩图为一条斜直线AB段段:剪力图为斜向下的斜直线;剪力图为斜向下的斜直线; 弯矩图为上凸的二次曲线弯矩图为上凸的二次曲线。C、A、B 截面剪力图有突变;截面剪力图有突变;大小为其集中力的值。大小为其集中力的值。A截面弯截面弯矩图有突变;大小为其集中力矩图有突变;大小为其集中力偶的值。偶的值。Q=0处处M有极值有极值201525Q(x)x(kN)M(x)xkNm202.5m31.2520BRAR40解

26、:求支反力2 ; 2qaFqaFDYAY0;2MqasF左端点A:221;2qaMqasFB点左:221;2qaMqasFB点右:221;2qaMqasFC点左:M 的驻点:283; 0qaMsF221;2qaMqasFC点右:0 ; 21MqasF右端点D:Fsxqa/2qa/2qa/2+qa2qaABCDxM3qa2/8qqa2/2qa2/2qa2/2FAYFDYaaa41外力外力无分布荷载段均布载荷段集中力集中力偶q=0q0q0QQ0 x斜直线增函数xQxQ降函数xQCQ1Q2Q1Q2=F自左向右突变xQC无变化斜直线Mx增函数xM降函数曲线xM盆状坟状xM自左向右折角 自左向右突变xM

27、折向与F同向三、剪力、弯矩与分布力之间关系的应用图三、剪力、弯矩与分布力之间关系的应用图 MmMM21与m同xM1M242弯曲内力小结弯曲内力小结一、一、弯曲的概念弯曲的概念:受力特点受力特点作用于杆件上的外力都垂直于杆的轴线。作用于杆件上的外力都垂直于杆的轴线。变形特点变形特点杆轴线由直线变为一条平面的曲线。杆轴线由直线变为一条平面的曲线。二、平面弯曲的概念:二、平面弯曲的概念:受力特点受力特点作用于杆件上的外力都垂直于杆的轴线,且都在作用于杆件上的外力都垂直于杆的轴线,且都在 梁的纵向对称平面内(通过或平行形心主轴上且过梁的纵向对称平面内(通过或平行形心主轴上且过 弯曲中心)。弯曲中心)。

28、变形特点变形特点杆的轴线在梁的纵向对称面内由直线变为一条平杆的轴线在梁的纵向对称面内由直线变为一条平 面曲线。面曲线。 三、弯曲内力的确定三、弯曲内力的确定1、内力的正负规定内力的正负规定: :43(1 1)、截面法)、截面法截开;代替;平衡。截开;代替;平衡。剪力剪力Fs: :在保留段内任取一点,如果剪力的方向对其点之矩为在保留段内任取一点,如果剪力的方向对其点之矩为 顺时针的,则此剪力规定为正值,反之为负值。顺时针的,则此剪力规定为正值,反之为负值。弯矩弯矩M:使梁微段变成上凹下凸形状的为正弯矩;反之为负值。使梁微段变成上凹下凸形状的为正弯矩;反之为负值。2、内力的计算:、内力的计算:注意的问题注意的问题a a、在截开面上设正的内力方向。、在截开面上设正的内力方向。b b、在截开前不能将外力平移或简化。、在截开前不能将外力平移或简化。(2 2)、简易法求内力:)、简易法求内力:Fs=FFs=Fi i(一侧)(一侧) , M=M=m mi i。(一侧)。(一侧)。左上右下剪力为正,左顺右逆弯矩为正。

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论