版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、晶体的结构和性质第一节 晶体的结构1、晶体的分类、晶体的分类 按来源分为:按来源分为: 天然晶体(宝石、冰、天然晶体(宝石、冰、 砂子等)砂子等) 人工晶体(各种人工晶体材料等)人工晶体(各种人工晶体材料等) 一、晶体的分类一、晶体的分类按成键特点分为:按成键特点分为: 原子晶体:金刚石原子晶体:金刚石 离子晶体:离子晶体:NaCl 分子晶体:冰分子晶体:冰 金属晶体:金属晶体: Cu 晶体的定义“晶体是由原子或分子在空间按一定规律周期性地重复排列构成的固体物质。” 注意: (1)一种物质是否是晶体是由其内部结 构决定的,而非由外观判断; (2)周期性是晶体结构最基本的特征。晶体不仅与我们的日
2、常生活密不可分,而且在许多高科技领域也有着重要的应用。晶体的外观和性质都是由其内部结构决定的: 决定 结构 性能 反映图片图片2图片3图片4图片5BBO晶体BBO(偏硼酸钡)晶体 BBO晶体在非线性光学晶体中,是一种综合优势明显,性能良好的晶体,它有着极宽的透光范围,较大的相匹配角,较高的抗光损伤阈值、宽带的温度匹配以及优良的光学均匀性,特别是用于Nd:YAG激光器之三倍频有着广泛的应用。 BBO晶体的主要用途: (1)用于1064nm Nd:YAG激光器之二倍频、三倍频、四倍频和五倍频。 (2)用于染料激光器和钛宝石激光器之二倍频、三倍频、和频、差频等。 (3)用于光学参量振荡、放大器等。
3、BBO晶体的主要性质: 化学式: -BaB2O4 晶体构式: 三方晶系,3m点群。 晶胞参数: a=b=12.532 A c=12.717 A z=6 熔点: 10955 C 莫氏硬度: 4.55 密度: 3.85g/cm3 光学均匀性: n10-6/cm 吸收系数: 0.001/cm1064nm 0.01/cm532nm 0.5/cm2550nm 热导率: C, k1=k2=1.2w/m/k,C, k3=1.6w/m/k。 二、晶体性质 均匀性均匀性各向异性各向异性自发地形成多面体外形自发地形成多面体外形 F+V=E+2 F+V=E+2 其中,其中,F-F-晶面,晶面,V-V-顶点,顶点,E
4、-E-晶棱晶棱有明显确定的熔点有明显确定的熔点有特定的对称性有特定的对称性使使X X射线产生衍射射线产生衍射三、晶体的点阵结构概念:在晶体内部原子或分子概念:在晶体内部原子或分子周期性周期性地排列地排列的每个重复单位的相同位置上定一个点,这的每个重复单位的相同位置上定一个点,这些点按一定周期性规律排列在空间,这些点些点按一定周期性规律排列在空间,这些点构成一个构成一个点阵点阵。点阵是一组无限的点,连结。点阵是一组无限的点,连结其中任意两点可得一矢量,将各个点阵按此其中任意两点可得一矢量,将各个点阵按此矢量平移能使它复原。点阵中每个点都具有矢量平移能使它复原。点阵中每个点都具有完全相同的周围环境
5、完全相同的周围环境。结构基元:结构基元: 在晶体的点阵结构中每个点阵所代在晶体的点阵结构中每个点阵所代表的具体内容,包括原子或分子的表的具体内容,包括原子或分子的种类和数量及其在空间按一定方式种类和数量及其在空间按一定方式排列的结构。排列的结构。晶体结构晶体结构 = = 点阵点阵 + + 结构基元结构基元(1)直线点阵)直线点阵(2)平面点阵)平面点阵(3)晶胞空间点阵必可选择空间点阵必可选择3 3个个不相平行不相平行的连结相邻两个的连结相邻两个点阵点的点阵点的单位矢量单位矢量a a,b b,c c,它们将点阵划分成,它们将点阵划分成并置的平行六面体单位,称为点阵单位。相应并置的平行六面体单位
6、,称为点阵单位。相应地,按照晶体结构的周期性划分所得的平行六地,按照晶体结构的周期性划分所得的平行六面体单位称为晶胞。矢量面体单位称为晶胞。矢量a a,b b,c c的长度的长度a a,b b,c c及其相互间的夹角及其相互间的夹角,称为点阵参数或称为点阵参数或晶胞参数。晶胞参数。晶胞结构图 晶胞晶胞晶胞与晶格晶胞与晶格晶胞的划分晶胞的划分对称性对称性 晶系晶系 正当晶胞正当晶胞正当晶胞正当晶胞素晶胞:含素晶胞:含1个结构基元个结构基元复晶胞:含复晶胞:含2个以上结构基元个以上结构基元晶胞的二个要素晶胞的二个基本要素:晶胞的二个基本要素: 一是晶胞大小和形状;一是晶胞大小和形状; 二是晶胞中各
7、原子坐标位置。二是晶胞中各原子坐标位置。 晶胞大小和形状可用晶胞参数表示;晶胞大小和形状可用晶胞参数表示; 晶晶 胞中原子位置可用分数坐标表示。胞中原子位置可用分数坐标表示。原子分数坐标晶体中原子的坐标参数是以晶胞的晶体中原子的坐标参数是以晶胞的3 3个轴个轴 作为坐标轴,以作为坐标轴,以3 3个轴的轴长作为坐标轴个轴的轴长作为坐标轴 单位的单位的: : 因为因为x x、y y、z z 1 1,所以我们将,所以我们将x x、y y、z z定定 义为分数坐标。义为分数坐标。czbyaxr晶胞知识要点晶胞一定是一个平行六面体,其三边长度晶胞一定是一个平行六面体,其三边长度a,b,c不一定相等,也不
8、一定垂直。不一定相等,也不一定垂直。整个晶体就是由晶胞周期性的在三维空间并置整个晶体就是由晶胞周期性的在三维空间并置 堆砌而成的。堆砌而成的。划分晶胞要遵循划分晶胞要遵循2个原则:一是尽可能反映个原则:一是尽可能反映 晶体内结构的对称性;二是尽可能小。晶体内结构的对称性;二是尽可能小。并置堆砌并置堆砌 整个晶体就是由整个晶体就是由 晶胞周期性的在三维晶胞周期性的在三维 空间并置堆砌而成的。空间并置堆砌而成的。晶胞种质点个数的计算晶胞种质点个数的计算第二节、晶体结构的对称性第二节、晶体结构的对称性一、晶体的对称性一、晶体的对称性1 晶系晶系 根据晶体的对称性,按有无某种特征对称元素根据晶体的对称
9、性,按有无某种特征对称元素为标准,将晶体分成为标准,将晶体分成7个晶系:个晶系:立方晶系立方晶系(c):在立方晶胞在立方晶胞4个方向体对角线上个方向体对角线上均有三重旋转轴均有三重旋转轴(a=b=c, =90)六方晶系六方晶系(h):有有1个六重对称轴个六重对称轴(a=b, =90, =120)晶系晶系 四方晶系四方晶系(t):有有1个四重对称轴个四重对称轴(a=b, =90) 三方晶系三方晶系(h):有有1个三重对称轴个三重对称轴(a=b, =90, =120) 正交晶系正交晶系(o):有有3个互相垂直的二重对称轴或个互相垂直的二重对称轴或2个个互相垂直的对称面互相垂直的对称面(=90) 单
10、斜晶系单斜晶系(m):有有1个二重对称轴或对称面个二重对称轴或对称面(=90) 三斜晶系三斜晶系(a):没有特征对称元素没有特征对称元素1 晶系晶系bcabcabacbacbacbacbac立方立方 Cubica=b=c, = = =90四方四方 Tetragonala=b c, = = =90正交正交 Rhombica b c, = = =90三方三方 Rhombohedrala=b=c, = =90a=b c, = =90 =120六方六方 Hexagonal a=b c, = =90, =120单斜单斜 Monoclinic a b c = =90, 90三斜三斜 Triclinica
11、b c = = =90空间点阵型式空间点阵型式 根据晶体结构的对称性,将点阵根据晶体结构的对称性,将点阵 空间的分布按正当单空间的分布按正当单位形状的规定和带心型式进行分类,得到位形状的规定和带心型式进行分类,得到14种型式:种型式:简单六方简单六方(hP)R心六方心六方(hR)简单四方简单四方(tP)体心四方体心四方(tI)简单立方简单立方(cP)体心立方体心立方(cI)面心立方面心立方(cF)简单三斜简单三斜(ap) 简单单斜简单单斜(mP)C心单斜心单斜(mC,mA,mI)简单正交简单正交(oP)C心正交心正交(oC,oA,oB)体心正交体心正交(oI)面心正交面心正交(oF)空间点阵型
12、式要点空间点阵型式要点有素晶胞和复晶胞立方晶系:复晶胞:体心立方(cI)、面心立方(cF)和素晶胞:简单立方(cP)晶体结构的对称性晶体结构的对称性晶系晶系 空间点阵型式空间点阵型式 点群点群 空间群空间群晶胞类型晶胞类型堆积方式:堆积方式:A1, A3, A2, A4二、晶体结构的表达及应用二、晶体结构的表达及应用一般晶体结构需给出:一般晶体结构需给出:晶系晶系空间群(不作要求)空间群(不作要求)晶胞参数;晶胞参数;晶胞中所包含的原子或分子数晶胞中所包含的原子或分子数Z Z;特征原子的坐标特征原子的坐标密度计算密度计算晶体结构的基本重复单位是晶胞,只要将一个晶晶体结构的基本重复单位是晶胞,只
13、要将一个晶胞的结构剖析透彻,整个晶体结构也就掌握了。胞的结构剖析透彻,整个晶体结构也就掌握了。利用晶胞参数可计算晶胞体积利用晶胞参数可计算晶胞体积(V),根据相对分子,根据相对分子质量质量(M)、晶胞中分子数、晶胞中分子数(Z)和和Avogadro常数常数N,可,可计算晶体的密度计算晶体的密度 :NVMZ 晶体结构的密堆积原理1619年,开普勒模型(开普勒从雪花的六边形结构出发提出:固体是由球密堆积成的) 开普勒对固体结构的推测 冰的结构密堆积的定义密堆积:由无方向性的金属键、离子键和范德华密堆积:由无方向性的金属键、离子键和范德华力等结合的晶体中,原子、离子或分子等微观力等结合的晶体中,原子
14、、离子或分子等微观粒子总是趋向于相互配位数高,能充分利用空粒子总是趋向于相互配位数高,能充分利用空间的堆积密度最大的那些结构。间的堆积密度最大的那些结构。 密堆积方式因充分利用了空间,而使体系的势能密堆积方式因充分利用了空间,而使体系的势能尽可能降低,而结构稳定。尽可能降低,而结构稳定。常见的密堆积类型常见密堆积型式常见密堆积型式面心立方最密堆积(面心立方最密堆积(A1A1) 六方最密堆积(六方最密堆积(A3A3) 体心立方密堆积(体心立方密堆积(A2A2)最密最密非最密非最密晶体结构内容的相互关系晶体结构内容的相互关系晶晶体体晶体结构基本概念晶体类型及其性质堆积类型面心立方最密堆积六方最密堆
15、积体心立方密堆积简单立方堆积最密堆积非最密堆积密堆积原理是一个把中学化学的晶体结构内容联系起来的一个桥梁性的理论体系 。1.面心立方最密堆积面心立方最密堆积(A1)和六方最密堆积和六方最密堆积(A3)面心立方最密堆积面心立方最密堆积(A1)和和六方最密堆积六方最密堆积(A3)从上面的等径圆球密堆积图中可以看出:从上面的等径圆球密堆积图中可以看出:只有只有1 1种堆积形式种堆积形式; ;每个球和周围每个球和周围6 6个球相邻接个球相邻接, ,配位数位配位数位6,6,形形成成6 6个三角形空隙个三角形空隙; ;每个空隙由每个空隙由3 3个球围成个球围成; ;1. 1.由由NN个球堆积成的层中有个球
16、堆积成的层中有2N2N个空隙个空隙, , 即球数:空隙数即球数:空隙数=1=1:2 2。两层球的堆积情况图两层球的堆积情况图 1. 1.在第一层上堆积第二层时,要形成最密堆积,在第一层上堆积第二层时,要形成最密堆积,必须把球放在第二层的空隙上。这样,仅有半数必须把球放在第二层的空隙上。这样,仅有半数的三角形空隙放进了球,而另一半空隙上方是第的三角形空隙放进了球,而另一半空隙上方是第二层的空隙。二层的空隙。 2.2.第一层上放了球的一半三角形空隙,被第一层上放了球的一半三角形空隙,被4 4个球个球包围,形成四面体空隙;另一半其上方是第二层包围,形成四面体空隙;另一半其上方是第二层球的空隙,被球的
17、空隙,被6 6个球包围,形成八面体空隙。个球包围,形成八面体空隙。两层堆积情况分析两层堆积情况分析三层球堆积情况分析三层球堆积情况分析 第二层堆积时形成了两种空隙:第二层堆积时形成了两种空隙:四面体空隙和四面体空隙和八面体空隙。八面体空隙。那么,在堆积第三层时就会产那么,在堆积第三层时就会产生两种方式:生两种方式:1. 1.第三层等径圆球的突出部分落在正四面体空第三层等径圆球的突出部分落在正四面体空隙上,其排列方式与第一层相同,但与第二隙上,其排列方式与第一层相同,但与第二层错开,形成层错开,形成ABABABAB堆积。这种堆积方式可堆积。这种堆积方式可以从中划出一个以从中划出一个六方六方单位来
18、,所以称为单位来,所以称为六方六方最密堆积(最密堆积(A3A3)。2.2.另一种堆积方式是第三层球的突出部分另一种堆积方式是第三层球的突出部分落在第二层的八面体空隙上。这样,第三落在第二层的八面体空隙上。这样,第三层与第一、第二层都不同而形成层与第一、第二层都不同而形成ABCABCABCABC的结构。这种堆积方式可以从的结构。这种堆积方式可以从中划出一个中划出一个立方面心单位立方面心单位来,所以称为来,所以称为面面心立方最密堆积(心立方最密堆积(A1A1)。六方最密堆积(六方最密堆积(A3)图)图六方最密堆积(六方最密堆积(A3)分解图)分解图面心立方最密堆积(面心立方最密堆积(A一)图一)图
19、面心立方最密堆积(面心立方最密堆积(A1)分解图)分解图A1 型最密堆积图片型最密堆积图片将密堆积层的相对位置按照将密堆积层的相对位置按照ABCABCABCABC方式作方式作最密堆积,重复的周期为最密堆积,重复的周期为3 3层。这种堆积可划出层。这种堆积可划出面心立方晶胞。面心立方晶胞。A3型最密堆积图片型最密堆积图片将密堆积层的相对位置按照将密堆积层的相对位置按照ABABABABABAB方式作方式作最密堆积,这时重复的周期为两层。最密堆积,这时重复的周期为两层。A1、A3型堆积小结型堆积小结 同一层中球间有三角形空隙,平均每个球摊列同一层中球间有三角形空隙,平均每个球摊列2个空隙。个空隙。第
20、二层一个密堆积层中的突出部分正好处于第一层的空第二层一个密堆积层中的突出部分正好处于第一层的空隙即凹陷处,第二层的密堆积方式也只有一种,但这两隙即凹陷处,第二层的密堆积方式也只有一种,但这两层形成的空隙分成两种层形成的空隙分成两种 正四面体空隙(被四个球包围)正四面体空隙(被四个球包围)正八面体空隙(被六个球包围)正八面体空隙(被六个球包围)突出部分落在正四面体空隙突出部分落在正四面体空隙 AB堆积堆积 A3(六方)(六方)突出部分落在正八面体空隙突出部分落在正八面体空隙 ABC堆积堆积A1(面心立方)(面心立方)第三层第三层 堆积堆积 方式有两种方式有两种A1、A3型堆积的比较以上两种最密堆
21、积方式,每个球的配位数为以上两种最密堆积方式,每个球的配位数为12。有相同的堆积密度和空间利用率有相同的堆积密度和空间利用率(或堆积系数或堆积系数),即球体积与整个堆积体积之比。均为即球体积与整个堆积体积之比。均为74.05%。空隙数目和大小也相同,空隙数目和大小也相同,N个球(半径个球(半径R););2N个四面体空隙,可容纳半径为个四面体空隙,可容纳半径为0.225R的小球;的小球;N个八面体空隙,可容纳半径为个八面体空隙,可容纳半径为0.414R的小球。的小球。A1、A3的密堆积方向不同:的密堆积方向不同: A1:立方体的体对角线方向,共:立方体的体对角线方向,共4条,故有条,故有4个密堆
22、积方向个密堆积方向(111)()( 11)()(1 1)()(11 ),易向不同方向滑动,而具有良好的延展性。易向不同方向滑动,而具有良好的延展性。如如Cu. A3:只有一个方向,即六方晶胞的:只有一个方向,即六方晶胞的C轴方向,轴方向,延展性差,较脆,如延展性差,较脆,如Mg.111空间利用率的计算空间利用率的计算空间利用率:指构成晶体的原子、离子或分子在空间利用率:指构成晶体的原子、离子或分子在整个晶体空间中所占有的体积百分比。整个晶体空间中所占有的体积百分比。 球体积球体积 空间利用率空间利用率= 100% 晶胞体积晶胞体积A3型最密堆积的空间利用率计算型最密堆积的空间利用率计算解:解:
23、在在A3型堆积中取出六方晶胞,平行六面体的底是型堆积中取出六方晶胞,平行六面体的底是平行四边形,各边长平行四边形,各边长a=2r,则平行四边形的面积:,则平行四边形的面积: 平行六面体的高:平行六面体的高:22360sinaaaSaaah3623622的四面体高边长为33228236223raaaV晶胞)2(3423个球晶胞中有球rV%05.74%100晶胞球VVA1型堆积方式的空间利用率计算型堆积方式的空间利用率计算%05.74344:4232333晶胞球球晶胞空间利用率个球晶胞中含解:VVrVraV2.体心立方密堆积(体心立方密堆积(A2)A2不是最密堆积。不是最密堆积。每个球有八个最近的
24、配体每个球有八个最近的配体(处于边长为(处于边长为a的立方体的的立方体的8个顶点)和个顶点)和6个稍远个稍远的配体,分别处于和这个立方体晶胞相邻的六的配体,分别处于和这个立方体晶胞相邻的六个立方体中心。故其配体数可看成是个立方体中心。故其配体数可看成是14,空间,空间利用率为利用率为68.02%.每个球与其每个球与其8个相近的配体距离个相近的配体距离与与6个稍远的配体距离个稍远的配体距离addd15. 132ad23A2型密堆积图片型密堆积图片3. 金刚石型堆积(金刚石型堆积(A4)配位数为配位数为4,空间利用率为,空间利用率为 34.01%,不是密堆积。这,不是密堆积。这 种堆积方式的存在因
25、为原种堆积方式的存在因为原 子间存在着有方向性的共子间存在着有方向性的共 价键力。如价键力。如Si、Ge、Sn等。等。 边长为边长为a的单位晶胞含半径的单位晶胞含半径 的球的球8个。个。 ar834. 堆积方式及性质小结堆积方式堆积方式 点阵形式点阵形式 空间利用率空间利用率 配位数配位数 Z 球半径球半径面心立方面心立方最密堆积最密堆积(A1) 面心立方面心立方 74.05% 12 4 六方最密六方最密堆积堆积(A3) 六方六方 74.05% 12 2体心立方体心立方密堆积密堆积(A2) 体心立方体心立方 68.02% 8(或或14) 2 金刚石型金刚石型 堆积堆积(A4) 面心立方面心立方
26、 34.01% 4 8ra22acrba3622ar43ar835.堆积方式与晶胞关系堆积方式与晶胞关系A1面心立方晶胞A2体心立方晶胞A4面心立方晶胞A3六方晶胞 六方晶胞中a=bc, =90, =120原子坐标四、晶胞中原子的坐标与计数四、晶胞中原子的坐标与计数晶胞中的原子可用向量晶胞中的原子可用向量xa + yb + zc中的中的x, y, z组组成的三数组来表达它在晶胞中的位置,称为原成的三数组来表达它在晶胞中的位置,称为原子坐标,如,位于晶胞原点(顶角)的原子的子坐标,如,位于晶胞原点(顶角)的原子的坐标为坐标为0,0,0;位于晶胞体心的原子的坐标;位于晶胞体心的原子的坐标为为1/2
27、,1/2,1/2;位于;位于ab面心的原子坐标为面心的原子坐标为1/2,1/2,0;位于;位于ac面心的原子坐标为面心的原子坐标为1/2,0,1/2;等等(图等等(图7)。)。 坐标三数组中数的绝对值的取值区间为坐标三数组中数的绝对值的取值区间为1|x(y,z)|0。若取值为。若取值为1,相当于平移到另一个晶胞,与取,相当于平移到另一个晶胞,与取值为值为0毫无差别,可形象地说成毫无差别,可形象地说成“1即是即是0”。 因而,位于晶胞顶角的因而,位于晶胞顶角的8个原子的坐标都是个原子的坐标都是0,0,0,没有差别,它们中的每一个原子均为相邻的没有差别,它们中的每一个原子均为相邻的8个晶胞个晶胞共
28、用,平均每个晶胞只占共用,平均每个晶胞只占1/8。而且,只要一个顶角。而且,只要一个顶角上有原子,其他上有原子,其他7个顶角上也一定有相同的原子,否个顶角上也一定有相同的原子,否则就失去了平移性,不是晶胞。同样道理,坐标为则就失去了平移性,不是晶胞。同样道理,坐标为1/2,1/2,0的原子是指两个平行的的原子是指两个平行的ab面的面心原子,面的面心原子,而且有其一必有其二,否则也失去平移性,晶胞不而且有其一必有其二,否则也失去平移性,晶胞不复存在。复存在。 反之,坐标不同的原子即使是同种原子,在几反之,坐标不同的原子即使是同种原子,在几何上也不同,不能视为等同原子何上也不同,不能视为等同原子,
29、例如,坐,例如,坐标为标为1/2,1/2,0的原子与坐标为的原子与坐标为0,1/2,1/2的的原子是不同的。由此可见,当原子处于晶胞顶原子是不同的。由此可见,当原子处于晶胞顶角,每个晶胞平均有角,每个晶胞平均有81/8=1个原子;当原子个原子;当原子处在面上,每个晶胞平均有处在面上,每个晶胞平均有21/2 = 1个原子;个原子;当原子处于棱上,每个晶胞平均有当原子处于棱上,每个晶胞平均有41/4= 1个个原子;等等。毋容置疑,如果原子处在晶胞内,原子;等等。毋容置疑,如果原子处在晶胞内,则有一个算一个。则有一个算一个。 给出金刚石晶胞中各原子的坐标。给出金刚石晶胞中各原子的坐标。 素晶胞与复晶
30、胞素晶胞与复晶胞(体心晶胞、面心体心晶胞、面心晶胞和底心晶胞晶胞和底心晶胞) 素晶胞才是最小平移单位,是不可能再小的晶素晶胞才是最小平移单位,是不可能再小的晶胞,而且,它的内容物,即晶胞内的原子的集胞,而且,它的内容物,即晶胞内的原子的集合是微观晶体周期性平移的最小单元,即结构合是微观晶体周期性平移的最小单元,即结构基元;然而,人们有时并不用素晶胞来表达晶基元;然而,人们有时并不用素晶胞来表达晶体结构,例如,氯化钠晶体,其素晶胞是一个体结构,例如,氯化钠晶体,其素晶胞是一个夹角夹角60o的菱方晶胞,可是通常人们都用比这个的菱方晶胞,可是通常人们都用比这个素晶胞大得多的面心立方晶胞来表达氯化钠结
31、素晶胞大得多的面心立方晶胞来表达氯化钠结构,后者是复晶胞,其内容物是素晶胞的构,后者是复晶胞,其内容物是素晶胞的4倍。倍。,如果选用素晶胞不能充分反映晶体的微观对,如果选用素晶胞不能充分反映晶体的微观对称性,就不得不选用复晶胞。称性,就不得不选用复晶胞。 体心晶胞体心晶胞(2倍体),符号I,面心晶胞面心晶胞(4倍体),符号F,和底心晶胞底心晶胞,符号A、B或C(2倍体)三种。 第四节第四节 晶体类型晶体类型根据形成晶体的化合物的种类不同可以根据形成晶体的化合物的种类不同可以将晶体分为:离子晶体、分子晶体、原将晶体分为:离子晶体、分子晶体、原子晶体和金属晶体。子晶体和金属晶体。1. 离子晶体离子
32、晶体离子键无方向性和饱和性,在离子晶体中正、负离子尽可能地与异号离子接触,采用最密堆积。离子晶体可以看作大离子进行等径球密堆积,小离子填充在相应空隙中形成的。离子晶体多种多样,但主要可归结为6种基本结构型式。配位多面体的极限半径比配位多面体的极限半径比配位多面体配位多面体 配位数配位数 半径比半径比(r+/r-)min平面三角形 3 0.155四面体 4 0.225八面体 6 0.414立方体 8 0.732立方八面体 12 1.000构性判断构性判断半径比半径比(r+/r-) 推测构型推测构型 0.225-0.414 四面体配位四面体配位 0.414-0.732 八面体配位八面体配位 0.7
33、32 立方体配位立方体配位影响晶体结构的其它因素影响晶体结构的其它因素M-XM-X间的共价键,方向性;间的共价键,方向性;有的过渡金属形成有的过渡金属形成M-MM-M键,使配位多面键,使配位多面体变形;体变形;M M周围的配体周围的配体X X的配位场效应使离子配位的配位场效应使离子配位多面体变形。多面体变形。实验测定是最终标准。实验测定是最终标准。(1)NaCl(1)立方晶系,面心立方晶胞;)立方晶系,面心立方晶胞; (2)Na+和和Cl- 配位数都是配位数都是6; (3)Z=4(4) Na+,C1-,离子键。,离子键。 (5)Cl- 离子和离子和Na+离子沿(离子沿(111)周期为)周期为|
34、AcBaCb|地堆积,地堆积,ABC表示表示Cl- 离子,离子,abc表示表示Na+离子;离子; Na+填充在填充在Cl-的正八面体空隙中。的正八面体空隙中。NaCl的晶胞结构和密堆积层排列的晶胞结构和密堆积层排列(NaCl, KBr, RbI, MgO, CaO, AgCl)ZnS ZnS是是S2-最密堆积,最密堆积,Zn2+填充在一半四面体空隙填充在一半四面体空隙中。分立方中。分立方ZnS和六方和六方ZnS。立方立方ZnS(1)立方晶系,面心立方晶胞;)立方晶系,面心立方晶胞;Z=4(2)S2-立方最密堆积立方最密堆积|AaBbCc|(3)配位数)配位数4:4。 (4)Zn原子位于面心点阵
35、的阵原子位于面心点阵的阵点位置上;点位置上;S原子也位于另一个这原子也位于另一个这样的点阵的阵点位置上,后一个点阵对于前一个点阵样的点阵的阵点位置上,后一个点阵对于前一个点阵的位移是体对角线底的位移是体对角线底1/4。原子的坐标是:。原子的坐标是: 4S:0 0 0,1/2 1/2 0,1/2 0 1/2,0 1/2 1/2;4Zn:1/4 1/4 1/4,3/4 3/4 1/4,3/4 1/4 3/4,1/4 3/4 3/4六方六方ZnS(1)六方晶系,简单六方晶胞。)六方晶系,简单六方晶胞。 (2)Z=2(3)S2-六方最密堆积六方最密堆积|AaBb|。(4)配位数)配位数4:4。 (6)
36、2s:0 0 0,2/3 1/3 1/2; 2Zn:0 0 5/8,2/3 1/3 1/8。CaF2型型(萤石)(萤石)(1)立方晶系,面心立方晶胞。)立方晶系,面心立方晶胞。(2)Z=4(3)配位数)配位数8:4。(4)Ca2+,F-,离子键。,离子键。 (5)Ca2+立方最密堆积,立方最密堆积,F-填充在全部填充在全部 四面体空隙中。四面体空隙中。 (6)Ca2+离子配列在面心立方点阵的阵点位置离子配列在面心立方点阵的阵点位置上,上,F-离子配列在对离子配列在对Ca2+点阵的位移各为对角点阵的位移各为对角线的线的1/4与与3/4的两个面心立方点阵的阵点上。的两个面心立方点阵的阵点上。原子坐
37、标是:原子坐标是: 4Ca2+:0 0 0,1/2 1/2 0,1/2 0 1/2,0 1/2 1/2; 8F-:1/4 1/4 1/4,3/4 3/4 1/4,3/4 1/4 3/4,1/4 3/4 3/4,3/4 3/ 4 3/4,1/4 1/4 3/4,1/4 3/4 1/4,3/4 1/4 1/4。CaF2结构图片结构图片CaF2的结构图CsCl型型: (1)立方晶系,简单立方晶胞。)立方晶系,简单立方晶胞。(2)Z=1。 (3)Cs+,Cl-,离子键。,离子键。 (4)配位数)配位数8:8。(5) Cs+离子位于简单立方点阵的阵点上位置上,离子位于简单立方点阵的阵点上位置上,Cl-离
38、子也位于另一个这样的点阵的阵点位置上,离子也位于另一个这样的点阵的阵点位置上,它对于前者的位移为体对角线的它对于前者的位移为体对角线的1/2。原子的坐。原子的坐标是:标是: Cl-:0 0 0;Cs+:1/2 1/2 1/2 (CsCl, CsBr, CsI, NH4Cl) TiO2型型(1)四方晶系,体心四方晶胞。)四方晶系,体心四方晶胞。(2)Z=2 (3)O2-近似堆积成六方密堆积结构,近似堆积成六方密堆积结构,Ti4+填入一填入一 半的八面体空隙,每个半的八面体空隙,每个O2-附近有附近有3个近似于个近似于 正三角形的正三角形的Ti4+配位。配位。(4)配位数)配位数6:3。 TiO2
39、结构图片结构图片2.分子晶体分子晶体定义:单原子分子或以共价键结合的有限定义:单原子分子或以共价键结合的有限分子,由范德华力凝聚而成的晶体。分子,由范德华力凝聚而成的晶体。范围:全部稀有气体单质、许多非金属单范围:全部稀有气体单质、许多非金属单质、一些非金属氧化物和绝大多数有机化质、一些非金属氧化物和绝大多数有机化合物都属于分子晶体。合物都属于分子晶体。特点:以分子间作用力结合,相对较弱。特点:以分子间作用力结合,相对较弱。除范德华力外,氢键是有些分子晶体中重除范德华力外,氢键是有些分子晶体中重要的作用力。要的作用力。氢键氢键定义:定义:,是极性很大的是极性很大的共价键,、是电负性很强的原子。
40、共价键,、是电负性很强的原子。氢键的强弱介于共价键和范德华力之间;氢键的强弱介于共价键和范德华力之间;氢键由方向性和饱和性;氢键由方向性和饱和性;间距为氢键键长,间距为氢键键长,夹角夹角为氢键键角(通常为氢键键角(通常100100180 180 );一般来);一般来说,键长越短,键角越大,氢键越强。说,键长越短,键角越大,氢键越强。氢键对晶体结构有着重大影响。氢键对晶体结构有着重大影响。3.原子晶体原子晶体定义:以共价键形成的晶体。定义:以共价键形成的晶体。共价键由方向性和饱和性,因此,原子晶共价键由方向性和饱和性,因此,原子晶体一般硬度大,熔点高,不具延展性。体一般硬度大,熔点高,不具延展性
41、。代表:金刚石、代表:金刚石、Si、Ge、Sn等的单质,等的单质, C3N4、SiC、SiO2等。等。4.金属晶体金属晶体金属键是一种很强的化学键,其本质是金金属键是一种很强的化学键,其本质是金属中自由电子在整个金属晶体中自由运动,属中自由电子在整个金属晶体中自由运动,从而形成了一种强烈的吸引作用。从而形成了一种强烈的吸引作用。绝大多数金属单质都采用绝大多数金属单质都采用A1、A2和和A3型型堆积方式;而极少数如:堆积方式;而极少数如:Sn、Ge、Mn等等采用采用A4型或其它特殊结构型式。型或其它特殊结构型式。金属晶体ABABAB, 配位数:12. 例: Mg and ZnABCABC, 配为
42、数配为数 : 12, 例例: Al, Cu, Ag, Au立方密堆积,面心立方密堆积,面心体心立方体心立方 e.g., Fe, Na, K, U简单立方(钋,简单立方(钋,Po)简单立方堆积简单立方堆积(a) 简单立方:简单立方:d = m/a3 = (M/NA)/(2r)3 = M/(8NAr3)(b) 体心立方:体心立方: d = m/a3 = (2M/NA)/(4r/31/2)3 = 33/2M/(32NAr3)(c) 面心立方:面心立方: d = m/a3 = (4M/NA)/(81/2r)3 = 4M/(83/2NAr3) (a):(b):(c) 1:1.299:1.414 面心结构
43、密度最大,最稳定面心结构密度最大,最稳定(立方密堆积立方密堆积)密度与金属固体的结构密度与金属固体的结构专题一、空隙专题一、空隙构成晶体的基本粒子之间会形成空隙,因而空隙是晶体结构必不可少的组成部分。掌握晶体结构中空隙的构成和特点,对深刻理解晶体的基本结构规律、分析和解决晶体结构问题有着重要的现实意义。 高中学生化学竞赛的晶体结构内容在密堆积和晶体类型两个部分涉及到了晶体结构的空隙。 堆积球数堆积球数 四面体空隙数四面体空隙数 八面体空隙数八面体空隙数1 2 1,四面体和八面体空隙分别可容纳,四面体和八面体空隙分别可容纳半径为半径为0.225R和和0.414R的内切球,的内切球,R为堆为堆积球
44、半径。积球半径。图图2例题例题1 1(2006年高中学生化学竞赛江苏省级赛年高中学生化学竞赛江苏省级赛区选拔赛区选拔赛试题试题)C60的发现开创了国际科学界的一个新领域,除的发现开创了国际科学界的一个新领域,除C60分子本身具有诱人的性质外,人们发现它的金属掺分子本身具有诱人的性质外,人们发现它的金属掺杂体系也往往呈现出多种优良性质,所以掺杂杂体系也往往呈现出多种优良性质,所以掺杂C60成为当今的研究热门领域之一。经测定成为当今的研究热门领域之一。经测定C60晶体为晶体为面心立方结构,晶胞参数面心立方结构,晶胞参数a1420pm(10-12m)。在。在C60中掺杂碱金属钾能生成盐,假设掺杂后的
45、中掺杂碱金属钾能生成盐,假设掺杂后的K填充填充C60分子堆积形成的全部八面体空隙,在晶体中以分子堆积形成的全部八面体空隙,在晶体中以K和和C60存在,且存在,且C60可近似看作与可近似看作与C60半径相同的半径相同的球体。已知球体。已知C的范德华半径为的范德华半径为170pm,K的离子半的离子半径径133pm。(1)掺杂后晶体的化学式为)掺杂后晶体的化学式为 ;晶胞类型;晶胞类型为为 ;如果;如果C60为顶点,那么为顶点,那么K所处的位置所处的位置是是 ;处于八面体空隙中心的;处于八面体空隙中心的K到最邻近的到最邻近的C60中心距离是中心距离是 pm。(2)实验表明)实验表明C60掺杂掺杂K后
46、的晶胞参数几乎没有发后的晶胞参数几乎没有发生变化,试给出理由。生变化,试给出理由。 (3)计算预测)计算预测C60球内可容纳半径多大的掺杂原球内可容纳半径多大的掺杂原子。子。 解答解答这个题目的关键是掺杂这个题目的关键是掺杂C60晶胞的构建。晶胞的构建。C60形成如下图所示的面心立方晶胞,形成如下图所示的面心立方晶胞,K填充全填充全部八面体空隙,根据本文前面的分析,这就部八面体空隙,根据本文前面的分析,这就意味着意味着K处在处在C60晶胞的体心和棱心,形成晶胞的体心和棱心,形成类似类似NaCl的晶胞结构。这样,掺杂的晶胞结构。这样,掺杂C60的晶胞的晶胞确定后,下面的问题也就迎刃而解了。确定后
47、,下面的问题也就迎刃而解了。 (1 1)KCKC6060; 面心立方晶胞;体心和棱心;面心立方晶胞;体心和棱心; 710pm710pm(晶胞体心到面心的距离,边长的一半。(晶胞体心到面心的距离,边长的一半。(2 2)C C6060分子形成面心立方最密堆积,由其晶胞分子形成面心立方最密堆积,由其晶胞参数可得参数可得C C6060分子的半径:分子的半径: pmarC5022214202260所以所以C C6060分子堆积形成的八面体空隙可容纳的球分子堆积形成的八面体空隙可容纳的球半径为:半径为: 这个半径远大于这个半径远大于K K的离子半径的离子半径133pm133pm,所以,所以对对C C606
48、0分子堆积形成的面心立方晶胞参数几乎没分子堆积形成的面心立方晶胞参数几乎没有影响。有影响。(3 3)因)因r rC60C60502pm502pm,所以空腔半径,即,所以空腔半径,即C C6060球内球内可容纳原子最大半径为:可容纳原子最大半径为: 502502170170 2 2162pm162pm pmrr208502414. 0414. 0堆积容纳例题1(2004 年全国高中学生化学竞赛(省级赛区)第2题(4分)2004年7月德俄两国化学家共同宣布,在高压下氮气会发生聚合得到高聚氮, 这种高聚氮的N-N键的键能为160 kJ/mol (N2的键能为942 kJ/mol),晶体结构如图所示。
49、在这种晶体中,每个氮原子的配位数为 ;按键型分类时,属于 晶体。这种固体的可能潜在应用是 ,这是因为: 。 答案答案答案: 3, 原子原子晶体,晶体, 炸药(炸药(或或高能材料),高能材料), 高聚氮分解成高聚氮分解成N2释放大量能量。(各释放大量能量。(各1分)分) 例题2题目:经题目:经 X射线分析鉴定,某一离子晶体射线分析鉴定,某一离子晶体属于立方晶系,其晶胞参数属于立方晶系,其晶胞参数 a=403.lpm。晶。晶胞顶点位置为胞顶点位置为Ti4+所占,体心位置为所占,体心位置为Ba2+所所占,所有棱心位置为占,所有棱心位置为O2-所占。请据此回答所占。请据此回答或计算:或计算:1用分数坐
50、标表达请离子在晶胞中的位置;用分数坐标表达请离子在晶胞中的位置;2写出此晶体的化学式;写出此晶体的化学式; 3指出晶体的点阵型式和结构基元指出晶体的点阵型式和结构基元;4指出指出Ti4+的氧配位数和的氧配位数和Ba2+的氧配位数;的氧配位数;5计算两种正离子的半径值(计算两种正离子的半径值(O2-半径为半径为 140 pm););6 Ba2+和和O2-联合组成哪种型式的堆积?联合组成哪种型式的堆积?7O2-的配位情况怎样?的配位情况怎样?解答1 Ti4+:0,0,0; Ba2+:1/2,1/2,1/2; O2-:1/2,0,0; 0,1/2,0; 0,0,1/2。2BaTiO33晶体的点阵型式
51、为简单立方,一个晶胞即一个结构基元,。4 Ti4+的氧配位数为6,Ba2+的氧配位数12。5在晶胞的棱上,Ti4+和O2-互相接触,故 Ba2+和O2-在高度为1/2a且平行于立方晶胞的面对角线方向上互相接触,因而 6联合组成立方最密堆积 。7 O2-的钛配位数为2,O2-的钡配位数为4。pmrarOTi6 .611401 .403212124pmrarOBa14522122本题延伸04年省赛例题3( 2003年省赛年省赛)甲烷水合物()甲烷水合物(nCHnCH4 446H46H2 2O O)是一种具有)是一种具有重要经济价值的化合物,在海洋深处蕴藏量非常大,是重要经济价值的化合物,在海洋深处
52、蕴藏量非常大,是未来的重要能源之一。它的晶体结构可看作由五角十二未来的重要能源之一。它的晶体结构可看作由五角十二面体面体5 51212和十四面体和十四面体5 512126 62 2共面连接堆积形成。在共面连接堆积形成。在立方晶胞中,立方晶胞中,5 51212的中心处在顶角和体心位置;的中心处在顶角和体心位置;5 512126 62 2中心位置坐标为(中心位置坐标为(0 0,1/41/4,1/21/2)、()、(0 0,3/43/4,1/21/2)、()、(1/21/2,0 0,1/41/4)、()、(1/21/2,0 0,3/43/4)、()、(1/41/4,1/21/2,0 0)、()、(3
53、/43/4,1/21/2,0 0)共计)共计6 6个。它们彼此共用六个。它们彼此共用六角形面连成柱体,再和五角十二面体共面连接。右图所角形面连成柱体,再和五角十二面体共面连接。右图所示出甲烷水合物中水骨架的结构。示出甲烷水合物中水骨架的结构。甲烷水合物晶胞结构甲烷水合物晶胞结构 (1 1)CHCH4 4分子由于体积较小,可包合在这两种分子由于体积较小,可包合在这两种多面体中,若全部充满时,确定晶胞的组成(即多面体中,若全部充满时,确定晶胞的组成(即n n值)值) 。 (2 2)已知该晶胞参数)已知该晶胞参数a a1180pm1180pm,计算,计算1m1m3 3甲烷甲烷水合物晶体中可释放水合物
54、晶体中可释放CHCH4 4的体积(标准状况下)。的体积(标准状况下)。 (3 3)有的文献中报导开采)有的文献中报导开采1m1m3 3的甲烷水合物晶的甲烷水合物晶体可得到体可得到164m164m3 3的甲烷气体,请根据的甲烷气体,请根据的结果给出的结果给出合理的解释。合理的解释。解答(1 1)8CH8CH4 446H46H2 2O O或或n n8 8 (2 2)按晶体的理想组成和晶胞参数,可算得晶胞体积)按晶体的理想组成和晶胞参数,可算得晶胞体积V V和晶胞和晶胞中包含中包含CHCH4 4的物质的量的物质的量n n(CHCH4 4):): V V(晶胞)(晶胞)a a3 3(1180pm)(1
55、180pm)3 31.641.6410109 9pmpm3 31.641.6410102727m m3 3 n(CH n(CH4 4) )1.331.3310102323mol mol 1m 1m3 3甲烷水合物晶体中含甲烷水合物晶体中含CHCH4 4的物质的量为:的物质的量为: n n1.331.3310102323molmol8.118.1110103 3mol mol 它相当于标准状态下的甲烷气体体积:它相当于标准状态下的甲烷气体体积: V V8.118.1110103 322.4m22.4m3 31010-3-3182m182m3 3 (3 3)文献报导值比实际值小,说明甲烷分子)文献
56、报导值比实际值小,说明甲烷分子在笼形多面体中并未完全充满,即由于它的晶在笼形多面体中并未完全充满,即由于它的晶体中体中CHCH4 4没有达到理想的全充满的结构。(实际没有达到理想的全充满的结构。(实际上甲烷水合物晶体结构形成时,并不要求上甲烷水合物晶体结构形成时,并不要求5 51212全部都充满全部都充满CHCH4 4分子,它的实际组成往往介于分子,它的实际组成往往介于6CH6CH4 446H46H2 2O O和和8CH8CH4 446H46H2 2O O之间。)之间。)例题例题4(2004年全国决赛题)题目:氢是重要而洁净)题目:氢是重要而洁净的能源。要利用氢气作能源,必须解决好安全的能源。
57、要利用氢气作能源,必须解决好安全有效地储存氢气问题。化学家研究出利用合金有效地储存氢气问题。化学家研究出利用合金储存氢气,储存氢气,LaNi5是一种储氢材料。是一种储氢材料。LaNi5的晶体的晶体结构已经测定,属六方晶系,晶胞参数结构已经测定,属六方晶系,晶胞参数a511pm,c397pm, 晶体结构如图所示:晶体结构如图所示:LaNi5晶体结构图 O La Ni 1 1从从LaNiLaNi5 5晶体结构图中勾画出一个晶体结构图中勾画出一个LaNiLaNi5 5晶胞。晶胞。2 2每个晶胞中含有多少个每个晶胞中含有多少个LaLa原子和原子和NiNi原子?原子?3 3LaNiLaNi5 5晶胞中含
58、有晶胞中含有3 3个八面体空隙和个八面体空隙和6 6个四面体空隙,个四面体空隙, 若每个空隙填入若每个空隙填入1 1个个H H原子,计算该储氢材料吸氢后氢的原子,计算该储氢材料吸氢后氢的密度,该密度是标准状态下氢气密度(密度,该密度是标准状态下氢气密度(8.9878.987 1010-5-5gcmgcm-3-3)的多少倍?(氢的相对原子质量为的多少倍?(氢的相对原子质量为1.0081.008;光速;光速c c为为2.9982.99810108 8msms1 1;忽略吸氢前后晶胞的体积变化)。;忽略吸氢前后晶胞的体积变化)。解答1、解答2晶胞中含有1个La原子和5个Ni原子。 3计算过程:六方晶
59、胞体积:Va2csin120(5.1110- 8)2 3.9710831/2/289.71024cm3是氢气密度的1.87103倍。324231678. 010774.8910022. 6008. 19cmgVmd例题例题5题目:题目:SiCSiC具有高硬度、高耐磨性、高耐腐蚀具有高硬度、高耐磨性、高耐腐蚀性及较高的高温强度等特点,已成为一种重要性及较高的高温强度等特点,已成为一种重要的工程材料。其晶体具有六方的工程材料。其晶体具有六方ZnSZnS型结构,晶型结构,晶胞参数为胞参数为a=308pma=308pm,c=505pmc=505pm,已知,已知C C原子的分原子的分数坐标为数坐标为0
60、0,0 0,0 0和和 ;SiSi原子的分数坐原子的分数坐标为标为 和和 。21,31,3285, 0 , 081,31,32(1 1) 按比例画出按比例画出SiCSiC六方晶胞;六方晶胞;(2 2)每个晶胞中含有)每个晶胞中含有SiCSiC 个。个。(3 3)晶体中)晶体中SiSi的堆积型式是的堆积型式是 。 C C填充的空隙类型是填充的空隙类型是 。 (4 4)列式计算)列式计算CSi键长。键长。 解答(1)SiC六方晶胞 解答(2 2)每个晶胞中含有)每个晶胞中含有2 2个个SiCSiC。 (3 3)SiSi原子作六方最密堆积,原子作六方最密堆积,C C原子填原子填 充在充在SiSi围成
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 简易劳务分包合同范本页2024年
- 2024股份协议书样本
- 失禁相关性皮炎
- 2024年医疗耗材采购合同
- 保安公司用工协议样本
- 农药分销协议样本
- 社区租房合同文本
- 房地产项目承包管理合同
- 润滑油采购合同的环保要求
- 创作者版权声明与保护合同
- 4.2 在实践中追求和发展真理 课件高中政治统编版必修四哲学与文化
- (妇幼健康项目)危重新生儿救治项目理论及技能操作题库(供参考)
- 高职护理专业《外科护理技术》说课稿
- 信息化系统安全运维服务方案三篇
- 全国职业院校技能大赛高职组(化工生产技术赛项)省选拔赛考试题库(含答案)
- 《药品生产监督管理办法》知识考试题库及答案
- 幼教培训课件:《幼儿园如何有效组织幼儿户外自主游戏》
- 17《爬天都峰》第一课时 公开课一等奖创新教学设计
- “非遗”之首-昆曲经典艺术欣赏智慧树知到期末考试答案章节答案2024年北京大学
- 股权投资撤资通知书
- 服务质量保障措施及进度保障措施
评论
0/150
提交评论