版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、KSMEInternationalJournal,VoL16,No.5,pp.599-608,2002599CharacterizationofFractureBehaviorinRepairedSkin/StiffenerStructurewithanInclinedCentralCrackKi-HyunChung",Won-HoYang,Sung-Pi!HeoDepartmentofMechanicalEngineering,SungkyunkwanUniversity,300Chunchun-Dong,Jangan-Ku,Suwon,Kyunggirdo440-746,Kore
2、aFiniteelementanalysisforthestressintensityfactortSfF)attheskin/stiffenerstructurewithinclinedcentralcrackrepairedbycompositestiffenedpanelsisdeveloped.Anumericalinvestigationwasconductedtocharacterizethefracturebehaviorandcrackgrowthbehaviorattheinclinedcrack.Inordertoinvestigatethecrackgrowthdirec
3、tion,maximumtangentialstress(MTS)criterionareused.Also,thispaperistostudytheperformanceoftheeffectivebondedcompositepatchrepairofaplatecontaininganinclinedcentralthrough-crack.Themainobjectiveofthisresearchisthevalidationoftheinclinedcrackpatchingdesign.Inthispaper,thereductionofstressintensityfacto
4、rsatthecrack-tipandpredictionofcrackgrowthdirectionaredeterminedtoevaluatetheeffectsofvariousnon-dimensionaldesignparameterincluding;compositepatchthicknessandstiffenerdistance.Wereporttheresultsoffiniteelementanalysisonthestiffenerlocationsandcrackslantanglesanddiscusstheminthispaper.Theresearchonc
5、rackedstructuresubjectedtomixedmodeloadingisaccomplishedandconcludesthatmoreworkusingadifferentapproachesisnecessary.Theauthorshopethepresentstudywillaidthosewhoareresponsiblefortherepairofdamagedaircraftstructuresandalsoprovidegeneralrepairguidelines.KeyWords:FractureMechanicsAnalysis,Skin/Stiffene
6、r,MaximumTangentialStress(MTS),CrackGrowthDirection,ReductionofStressIntensityFactor1.IntroductionDuetotherapiddevelopmentofaerospaceindustry,manyinvestigatorshavestudiedthecrackedstructuresbytherequestofsafety.Intheviewofincreasingtheservicelifeandreducingtherepaircost,theproperrepairmethodshavebee
7、nsuggested.Asasimpleandhandymethod,compositebondedpatches,whichnowarewidelyusedforcrackedstructures,canbeusedtorepairorreinforceaerospacestructuresbymodifyingtheirloaddistributionandbypassingdefectsorCorrespondingAuthor,E-mail:chungkhnature.skku.ac.krTEL:+82-31-290-7496;FAX:+82-31-290-5849Department
8、ofMechanicalEngineering,Sungkyun-kwanUniversity,300Chunchun-Dong,Jangan-Ku,Suwon,Kyunggi-do440-746,Korea.(ManuscriptRe-ceivedNovember30,2000;RevisedMarch2,2002)cracks.Inviewoftherapidlyincreasinguseofhighstrength,stiffnessandlowweight,fiber-reinforcedcompositematerialinadvancedengi-neeringstructures
9、suchashigh-performanceair-craftisdevelopedandused.Damagetolerancedesignandreliabilityofthecompositestructureshavebeenofsignificantconcernandhavealsobroughtarenewedinterestinthetheoreticalanalysis.Skin/stiffenerstructuresarecommonfeaturesofairframes(e.g.fuselages)andwingsarefrequentlymadefromstiffene
10、dsheets.Crackscanoccurinsuchstructuresinthevicinityofthestiffener.BakerandJones(1988)expressedthemanyadvantagesofemployingcompositematerialpatchesforthebondedrepairofcrackedanddamagedmetallicstructures.Bondedrepairsarelight-weight,eliminateunnecessaryfastenerholesinanalreadyweakenedanddamagedstructu
11、re,600Ki-HyunChung,Won-HoYangandSung-Pi!Heoenableloadtransfermoreevenlyandoverlargearea,thusenhancingthefatiguelifeoftherepairedstructure.Theprimaryadvantageofcompositerepairstocrackedstructuresistoimprovethedamagetoleranceoftherepairedstructure.Tothisaim,itisessentialtodemon-stratebyfractureanalysi
12、sandtestthattherepaircanretainthecrackpropagationanddamagetolerancerequirements.But,thismethodisverydifficulttoexactlyinvestigatethecrackbehavior.So,theexperimentalinvestigationandnumericalmethod(FiniteElementMethodandBoundaryElementMethodetc.)arecontinuouslyaccom-plishedtoproblemssuchashowtodistrib
13、utestressorhowtorestrainthecrack,andhowtopredictthecrackpropagationdirection.However,forasuccessfulimplementationofthisrepairtechnique,athoroughunderstandingoftheeffectofvariousdesignparametersofrepaironthecrack-tipstressintensityfactorsisneces-sary.loneandCallinan(1979,1983)studiedthecrackedpatchin
14、gusingthefiniteelementmethod.ChuandKo(1989)proposedamethodusingcollapsedisoparametricelementtopreservethesingularstresscharacteristicatthecracktip.Butthismethodrequireslargenumberofnodaldegreesoffreedom.Toovercomethisproblem,Atluri(1992)suggestedthefiniteelementalternatingmethod(FEAM)inwhichthemeshn
15、eedsnotbeveryrefinedintheregionofcracks.ChungandYang(2000)studiedthepatch'sefficiencyinviewoffracturemechanicsanddebonding.Andtheysuggestedtheoptimalpatchshapeonthereductionofstressintensityfactor.Aseriesofpreviouslyreportedresultshavesomelimitationonthehypothesisthatthestructureissubjecteduniax
16、ialloading,butmostofthestruc-turalcomponentsaresubjectedtobiaxialloading.Asthecrackdoesnotalignwithoneoftheprincipaldirections,themixedmodebehaviorwillhaveasignificanteffectonthecrackgrowthandfracturemechanics(Chue,etal.,1994).Inthispaper,theanalysisofrepairedskin/stiffenerstructurewithaninclinedcen
17、tralcrackisreported.Thefracturemechanicsanalysisatthecracktipisperformedandexpectationofthecrackpropagationdirectionistobesuggested.2.MethodofAnalysisAschematicdiagramoftheskin/stiffenerstructuretobestudiedisshowninFig.1.Analuminumrectangularskinandl-rypestiffenerpossessacentrallylocatedhorizontalth
18、rough-thicknessinclinedcrack.Topreventthepropaga-tionofcrack,anontapered0/90.boron/epoxycompositepatchisconsidered.FromthestudybyChungetal.(2000)consideringbothfracturemechanicsanddebonding,taperedpatchshapeismoreeffectivethannontaperedpatch.Skin/stiffenerandskin/patcharebondedwithepoxy.Thethickness
19、esplate,adhesivelayerandpatchare3mm,O.lmmand3mm.TheotherdimensionsandthematerialpropertiesaregiveninFig.2andTableI,respectively.Itisassumedthattheskin/stiffenersupportsanuniformtensilestress(0"0)of10MPainthey-Fig.1Configurationofskin/stiffenerplateFig.2Geometryofskin/stiffenerplatewithinclinedc
20、entralcrack(unit:mrn)CharacterizationofFractureBehaviorinRepairedSkin/StiffenerStructurewithanInclinedCentral»-601Table1Materialpropertiesofthealuminum,theboron/epoxypatch,andtheadhesivelayerYoung'smoduliShearmoduliPoisson'sratio(OPa)(OPa)E1E2E3G12G13G23)12)13V23Al-plate71.02-0.32-IPatc
21、h40.16770.16770.Q35Adhesive2.2-0.32-where(Jistheappliedload,aisthehalf-cracklength,andaistheanglebetweenthecracklineandthetensileaxis.Thestressintensityfactorcanalsobeobtainedbyconsideringthedisplacementoverthequar-ter-pointcrack-tipelementsshowninFig.3(a)2.1Stressintensityfa
22、ctorThefractureparameterforthecrackedstructureisoftengivenintermsofthestressintensityfactor.Thestressintensityfactorforacentralslantcrackoflength2ainaninfinitesheetsubjectedtoaremoteuniformuniaxialtensilestressisgivenby(Smith,1988)direction.Owingtosomeofthelimitationsofanalysis,thispaperisbasedonthe
23、followingsimplifiedassumptions.(l)Thecurvatureofthepanelisneglectedandisidealizedasaflatpanel.(2)Thebondingofthepatchandstiffenerisperfectwithoutdebonding.Thealuminumskin/stiffener,theboron/epoxycompositepatchandepoxylayermustremainlinearelastic.(3)Theadhesivelayerthicknessisrelativelythincom-paredt
24、otheplate/patchthickness,sothatageneralizedplanestressconditionisconsidered.Andtheshearstressbetweenplateandpatchistreatedasabodyforce.Theunpatchplatewithaninclinedcentralcracksituationisconsideredfirstforvalidityofthefiniteelementanalysis.Thisanalysisismadetoevaluatethestressintensityfactorsandcrac
25、kpropagationdirectionoftheplateunderserviceloadsintheabsenceofthepatchandstiffener.Theinvestigationofthepatchefficiency,bothofwithoutpatchandwithpatchareconsidered.Kr=(Jfiiisin2aKrr=(Jfiiisinacosa(1)(2)(Cooketal.,1989):KI=K1fIf-(4VB2-Vd-(4VBI-VC1)(3a)K«=KIfIf-(4uB2-ud-(4UBI-UC1)(3b)where,u=E/2(
26、1+II)istheshearmodulusofelasticity,Kisequalto(3-411)forplanestrainand(3-1I)/(1+v)forplanestress,andu.,ViareX-,y-componentsofthecrackopeningdisplacementCOD)atthecollapsedcracktipelements.IngraffaandManu(1980)proposedthecalcu-lationofstressintensityfactorforthethree-dimensionalquarter-pointcrack-tipel
27、ementsshowninFig.3(b).s,4(1V2)j211(2VB-VC+2VE-VF-2vB'+vc,-2vE'1+vp-VD')+217(-4VB+VC(4a)+4VE-vF+4v8'-vc,-4vE'+vp)+i-7l(VF+VC-2VD-vp-vc,+2vD')x,4(11I2)!211(2U8-UC+2UE-UF-2uB'+Uc,-2uE'1+up-UD')+217(-4U8+UC(4b)+4UE-UF+4uB'-Uc-4uE'+up)+7l(UF+Uc-2uD-up-uc·+
28、2uD')where,EandIIaretheYoung'smodulusandthePoisson'sratio,L1isthelengthofquarter-pointelementand17isthelocalcoordinateatthecrackfront,respectively.602Ki-HyunChung,Won-HoYangandSung-PilHeoIY.l'·11'+-1-"""9C2:=_-4ix.uCl(a)(b)Fig.3Arrangementofquarter-pointwedgee
29、lementalongsegmentofcrackfront(6a)(6b)2.2ReductionofstressintensityfactorForthemeasureofthefracturemechanicssafe-tyandpatchingefficiencycriteriaattherepairedcrack,thenondimensionalizedreductionofstressintensityfactorcanbeusedsuchthat(5)where,Ku,Kparethestressintensityfactorsfortheunpatchedandpatched
30、crackplates.Thereductionofstressintensityfactorsisveryimportanttodesignofrepairedcrackedplatebecausethisvalueimpliesthepatchefficiency.AsK*increasesthecrackpropagationde-creases,ontheotherhand,asK*decreasesthepossibilityoffractureincreases.(1963)isoneoftheearliesttheoriesdealingwithstablemixed-modec
31、rackgrowthdirectionunderstaticloading.Itpostulatesthatthecrackwillpropagationinthedirectiongovernedbythemaximumvalueofstressnormaltotheradiallinefromthecracktip.Therefore,thiscriterionassumesamodeIcrackgrowthmechanism.Mathematically,conditionforthecrackgrowthdirectioncanbeexpressedas:aa8=0.(fa8<0
32、ao'a02o;(Oe)=aeFormixed-mode,thecrackgrowthangle0basedonthiscriterionisfoundfromthefollow-ingequation:2.3PredictionofcrackgrowthdirectionInmanymixed-modecrackgrowthanalysis,thepredictionofcrackgrowthdirectionisusuallyconductedonlyattheinitialcracktip.Avarietyoftheoreticalmodelshasbeenproposedfor
33、thepredictionoffatiguecrackgrowthdirectionundermixed-modeloadings.Themaximumtangentialstresscriterion(alsocalledMTS)proposedbyErdoganandSihKr(sin+sin3:)+KI(cos+cos3:)=0(7)orKrsinO+KI(3cosO-I)=0(8)TheminimumstrainenergydensitycriterionwhichisoftencalledtheScriterionwasproposedbySih(1974),andwhichisba
34、sedonthelocaldensityoftheenergyfieldinthecracktipregion.CharacterizationofFractureBehaviorinRepairedSkin/StiffenerStructurewithanInclinedCentralc-603Formixed-modeloading,thefollowingequa-tionbasedonthiscriterionresults:Thecrackisassumedtogrowinthedirectionalongwhichthestrainenergydensityreachesminim
35、umvalue.Thestrainenergydensityfactorisdeterminedby(9)where,ai,canbeexpressedbyangle(8),Young'smodulus(E)andPoisson'sratio(II)andk;aredefinedbyk;=KJ5(i=I,II,JI)(10)asesae=O;a82>0sin28-0.92sin8+4Rk(cos28-cos8)+R/(0.92sin8-3sin8)=0where,RioistheratioKJ!K.3.FiniteElementAnalysis(11)(12)Thecon
36、ditionforcrackgrowthdirectioncanbeexpressedas:(a)(c)Thebasicgeometryofcrackedskin/stiffenerstructureconsideredinthisstudyisshownin(b)Distance(s=80mm)(d)Fig.4Finiteelementmodelingaroundcrack,inclineddegree(0)(a):0°,(b):45°,(c):90°,(d):wholemodelingofS/a=8604Ki-HyunChung,Won-HoYangandSu
37、ng-PitHeoFig.1.Considerathinelasticaluminumsheet240X360X3mmwithancentralcrackoflengthaandIrtypealuminumstiffener.Thebasicrepairconfigurationisa40X80X3mmboron/epoxycompositepatchbondedby0.3mmthickfilm-epoxyadhesive.Onceanefficientmodelisestablished,wewouldinvestigateasetofthisbasicconfigurationtostud
38、ytheeffectofstiffenerdistanceandcrackslantangle.Theslantcrackedsheetissubjectedtoaremoteuniaxialtensileloadof10MPa.Sincetheprob-lemhasnoplaneofsymmetry,itisnecessarytomodelthewholestructurebyusingthree-dimen-sional20-nodeisoparametricbrickelements.Theregionadjacenttothecrackfrontismodelledwiththesin
39、gularcrackelements.Inthesingularelementthemid-sidenodesareshiftedtothequar-ter-pointpositiontoinducetherequired(1/r)1/2stresssingularity(Fig.4).Togetbetterresults,thesingularelementsizesarekeptwithin10%ofthecracklength.FiniteelementanalysisisdoneusingacommercialABAQUScode(version5.8-8).Figure4showst
40、hefiniteelementmodelingforthestiffenerdistance80mmandthedetailconfig-urationofthecrackpartwithrespecttocrackangle.4.ResultsandDiscussionTable2Comparisonofstressintensityfactorforinclinedcrackedrectangularplates(0'0=10MPa,unit:MPav'ffiffi)InclinedSmithPresentCrackModeIiModenModeIModenAngleC
41、39;)SIFsiSIFsSIFsSIFs056.06!0i60.380II1054.36I9.60I58.6010.912049.5018.02I53.3420.463042.0424.27I45.3227.594032.9027.60I35.5031.41I4528.0328.03I30.2331.88I5023.1627.60i25.0231.436014.0124.2715.1327.63706.56I18.02I7.0820.52801.699.601.8210.9190000080r-r=;t7010o-"-'-'-"""&q
42、uot;"-'-=901530456075Inclinedcrackangle,8()-=_Nopateh-_hplhs-0.167._hplhs-0.333.-.-_hplhs=O.SOO_.-._-_.=:=:.i3.Smithinfinite)oL-'-'-koHInclinedcrackangle,IJ()7080r:=-r=:=)lFig.6ModenSIFwithrespecttoinclinedcrackangle(0'0=IOMPa)Fig.5ModeISIFwithrespecttoinclinedcrackangle(00=10MP
43、a)4.1RepairofinclinedcrackinunstiffenedpanelsFigures5-6showthestressintensityfactorswithrespecttotheinclinedcrackangle.Thestressintensityfactorsareobtainedintheaveragesensethroughthethickness.Toinvestigatethevalidityoftheresultsobtained,wecomparethosewithotheravailableresults.AscanbeseeninTable2andF
44、igs.5-6,theresultsareingoodagreementwithin7-10%withthoseobtainedbySmith(1988).Theseerrorsmaybecausedbythefactthatthepresentstudyconsidersthefinitemodel,butSmith'sstudyconsideredtheinfinitemodel.Figures7-8showthenondimensionalreductionofSIFwithrespecttovariousinclinedcrackangles.Fromtheresult,the
45、patchisveryefficienttorestrainthecrackgrowth.Ascom-paredwithunpatchedplate,themodeISIFsCharacterizationofFractureBehaviorinRepairedSkin/StiffenerStructurewithanInclinedCentral···605ofpatchedplatearereducedabout20-30%.ModeISIFsofthickpatcharerapidlyde-creasedastheanglebetweenloadingdir
46、ectionandinclinedcrackisdecreased.Oppositely,whenthecrackedinclinedangleisover75°,modeISIFsareincreasedasthethicknessofpatchincreases.Especially,modeISIFisnotzeroat90°ofpatchedplate.Thisphenomenonisduetothepresenceofout-of-planebendingdeformationwhichcausesthenonlinearbehaviorofmaterialand
47、geometry.ModenSIFsofpatchedplatearereducedabyabout30-45%.ThereductionofmodenSIFsisabout0.3-0.4,andwhihisindependentofinclinedangle.Ascanbeconcluded,theeffectofthickerpatchbecomesevenstronger,buttheSIFdoesnotgrowinfinitelyasthepatchthicknessincreasesbecauseoftheout-of-planebendingdeformation.And4.3Re
48、pairofinclinedcrackinstiffenedpanelsTheinfluenceofthedistanceofthestiffenertheeffectofpatchtothemodenbehaviorismoresignificantthanthemodeIbehavior.4.2PredictionofcrackgrowthdirectioninunstiffenedpanelsMostofthestudiesofcrackgrowthundermixedmodeIandnloadingshavebeenconductedusingaplatewithaninclinedc
49、entralcrackundertension.Topredictofcrackgrowthdirection,themaximumtangentialstresscriterionisexamined.Figure9showsthecrackgrowthdirectionattheunrepairedandrepairedplateswithaninclinedcentralcrack.Ascanbeseen,thepatcheffecttothecrackgrowthdirectionisrelativelyslight.Togetherwiththepatchthicknessincre
50、ase,thecrackgrowthdirectionhasatendencytogrowtowardthemodeIdirection.Asinclinedcrackangle(8lapproachesabout50-60°,whichtherangeisequalmodeISIFwithmodenSIF,thecrackgrowthdirectionoftheplaterepairedbycompositepatchbecomesperpendiculartotheapplyloadingdirection.Whentheinclinedangleapproachestheloa
51、d-ingdirection,thedifferencebetweenthepredictedcrackgrowthdirectionoftheoreticalanalysisandpredicteddirectionofpresentanalysisbecomeslanger.So,thecrackgrowthdirectionisunstable.bplhr-O.167_hplbs-O.333-+-hplbs=0.500-e-bplbs-O.667-e-hplbs=O.8334530151=-'._-O.8'<<,.;-0.69075304560Inclined
52、crackangle,8()150«:.-'-'-'-'o-+-Nopatch_hplbs=O.167_hplhs-o.333_hPlbS=O.SOO-e-bpibs-Q.667I.-=:t;J;=.-jhplbs-O.833I-3.Theoretical90.hpihr-Q.167_hplbs-O.333-+-hpihs=O.500-e-hplbs=O.667-e-hplbs-O.83330456075Inclinedcrackangle,8()15oL-'-.-'or.o.0.4.,;0.2."'=0.8"
53、;'=O.6'"'<Fig.8ReductionofmodenSIFwithrespecttoinclinedcrackangleFig.9Predictionofcrackgrowthdirectionfortherepairedplate606Ki-HyunChung,Won-HoYangandSung-Pi/HeoInclinedcrackangle,J()Fig.12ReductionofmodeISIFwithrespecttoinclinedcrackangle90_S16.Suapal<b).S18.0uupal<b)_S1a-
54、9.Suupa«:b).S1a-605pa<<:b).-0.S1.S.0pateb).-0.S1a=9.5(teb)oo8070:;30'"Cil20IS30456075Inclinedcrackangle,J()Fig.10ModeISIFwithrespecttoinclinedcrackangle(10=IOMPa)_S1a-605_S1.-S.0.51.-95<).Unstiffenede····0····<)-0-.&.&.·&
55、#183;e····<)····0HaInclinedcrackangle,J()ReductionofmodeIISIFwithrespecttoinclinedcrackangleooFig.13-.0.8.lei.:.''0.6"=e:0.4e.oS'g0.2_S1a-605uupa<<:b)-1.S1a-S.Ouupaleb)_S1a-905(uupateb).S16.Spa«:b).-0.S1S.Dpa«:b)-1·
56、3;-O··S1a_9.S(pa«:b)HaDInclinedcrackangle,8()Mode.IISIFwithrespecttoinclinedcrackangle(oo=lOMPa)o-'-'-.-'-.:.;o70_60e50l'oo!401-'"lei30f-'"Cil20Fig,111080(S=65mm,80mmand95mm)onthepredictedSIFandreductionofSIFisillustratedinFigs.10-13.Ascanbeseen,thest
57、iffenerlocationhaslessinfluenceontheSIF.But,whenthecracksizeincreases,thedistanceofstiffenerlocationmightbeplayingthemoreimportantroleinthecrackrestraintandcrackgrowthdirection.TheSIFofpatchedskin/stiffenerstructureis·decreasedabout1.5to2timesasmuchasunpatchedskin/stiffenerstructures.Wheninclinedcrackangler
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024医院临时工聘用合同参考范文
- 2024房屋转租合同简单版范本
- 2024钟点工劳动合同范本
- 2024绿化养护管理委托版合同
- 2024总经销合同范本范文
- 施工合同协议书样本
- 终止业务往来协议书
- 2024年软件变更协议书范文
- 商业秘密保护技术协议书
- 2023年高考地理重点难点考点通练-产业结构升级(解析版)
- 教案评分标准
- 中药饮片处方点评表
- 《节能监察的概念及其作用》
- 综合布线系统竣工验收表
- 蔬菜会员卡策划营销推广方案多篇
- 导管滑脱应急预案及处理流程
- (精选word)三对三篮球比赛记录表
- 大型火力发电厂专业词汇中英文翻译大全
- 火电厂生产岗位技术问答1000问(电力检修)
- 八年级思想读本《4.1“涉险滩”与“啃硬骨头”》教案(定稿)
- 高中语文教学课例《荷塘月色》课程思政核心素养教学设计及总结反思
评论
0/150
提交评论