一份关于压缩板中筋板对其屈服过程中抗扭刚度影响的一次实验性调查_第1页
一份关于压缩板中筋板对其屈服过程中抗扭刚度影响的一次实验性调查_第2页
一份关于压缩板中筋板对其屈服过程中抗扭刚度影响的一次实验性调查_第3页
一份关于压缩板中筋板对其屈服过程中抗扭刚度影响的一次实验性调查_第4页
一份关于压缩板中筋板对其屈服过程中抗扭刚度影响的一次实验性调查_第5页
已阅读5页,还剩5页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、KSMEInternationalJournal,VoL16,No.5,pp.599-608,2002599CharacterizationofFractureBehaviorinRepairedSkin/StiffenerStructurewithanInclinedCentralCrackKi-HyunChung",Won-HoYang,Sung-Pi!HeoDepartmentofMechanicalEngineering,SungkyunkwanUniversity,300Chunchun-Dong,Jangan-Ku,Suwon,Kyunggirdo440-746,Kore

2、aFiniteelementanalysisforthestressintensityfactortSfF)attheskin/stiffenerstructurewithinclinedcentralcrackrepairedbycompositestiffenedpanelsisdeveloped.Anumericalinvestigationwasconductedtocharacterizethefracturebehaviorandcrackgrowthbehaviorattheinclinedcrack.Inordertoinvestigatethecrackgrowthdirec

3、tion,maximumtangentialstress(MTS)criterionareused.Also,thispaperistostudytheperformanceoftheeffectivebondedcompositepatchrepairofaplatecontaininganinclinedcentralthrough-crack.Themainobjectiveofthisresearchisthevalidationoftheinclinedcrackpatchingdesign.Inthispaper,thereductionofstressintensityfacto

4、rsatthecrack-tipandpredictionofcrackgrowthdirectionaredeterminedtoevaluatetheeffectsofvariousnon-dimensionaldesignparameterincluding;compositepatchthicknessandstiffenerdistance.Wereporttheresultsoffiniteelementanalysisonthestiffenerlocationsandcrackslantanglesanddiscusstheminthispaper.Theresearchonc

5、rackedstructuresubjectedtomixedmodeloadingisaccomplishedandconcludesthatmoreworkusingadifferentapproachesisnecessary.Theauthorshopethepresentstudywillaidthosewhoareresponsiblefortherepairofdamagedaircraftstructuresandalsoprovidegeneralrepairguidelines.KeyWords:FractureMechanicsAnalysis,Skin/Stiffene

6、r,MaximumTangentialStress(MTS),CrackGrowthDirection,ReductionofStressIntensityFactor1.IntroductionDuetotherapiddevelopmentofaerospaceindustry,manyinvestigatorshavestudiedthecrackedstructuresbytherequestofsafety.Intheviewofincreasingtheservicelifeandreducingtherepaircost,theproperrepairmethodshavebee

7、nsuggested.Asasimpleandhandymethod,compositebondedpatches,whichnowarewidelyusedforcrackedstructures,canbeusedtorepairorreinforceaerospacestructuresbymodifyingtheirloaddistributionandbypassingdefectsorCorrespondingAuthor,E-mail:chungkhnature.skku.ac.krTEL:+82-31-290-7496;FAX:+82-31-290-5849Department

8、ofMechanicalEngineering,Sungkyun-kwanUniversity,300Chunchun-Dong,Jangan-Ku,Suwon,Kyunggi-do440-746,Korea.(ManuscriptRe-ceivedNovember30,2000;RevisedMarch2,2002)cracks.Inviewoftherapidlyincreasinguseofhighstrength,stiffnessandlowweight,fiber-reinforcedcompositematerialinadvancedengi-neeringstructures

9、suchashigh-performanceair-craftisdevelopedandused.Damagetolerancedesignandreliabilityofthecompositestructureshavebeenofsignificantconcernandhavealsobroughtarenewedinterestinthetheoreticalanalysis.Skin/stiffenerstructuresarecommonfeaturesofairframes(e.g.fuselages)andwingsarefrequentlymadefromstiffene

10、dsheets.Crackscanoccurinsuchstructuresinthevicinityofthestiffener.BakerandJones(1988)expressedthemanyadvantagesofemployingcompositematerialpatchesforthebondedrepairofcrackedanddamagedmetallicstructures.Bondedrepairsarelight-weight,eliminateunnecessaryfastenerholesinanalreadyweakenedanddamagedstructu

11、re,600Ki-HyunChung,Won-HoYangandSung-Pi!Heoenableloadtransfermoreevenlyandoverlargearea,thusenhancingthefatiguelifeoftherepairedstructure.Theprimaryadvantageofcompositerepairstocrackedstructuresistoimprovethedamagetoleranceoftherepairedstructure.Tothisaim,itisessentialtodemon-stratebyfractureanalysi

12、sandtestthattherepaircanretainthecrackpropagationanddamagetolerancerequirements.But,thismethodisverydifficulttoexactlyinvestigatethecrackbehavior.So,theexperimentalinvestigationandnumericalmethod(FiniteElementMethodandBoundaryElementMethodetc.)arecontinuouslyaccom-plishedtoproblemssuchashowtodistrib

13、utestressorhowtorestrainthecrack,andhowtopredictthecrackpropagationdirection.However,forasuccessfulimplementationofthisrepairtechnique,athoroughunderstandingoftheeffectofvariousdesignparametersofrepaironthecrack-tipstressintensityfactorsisneces-sary.loneandCallinan(1979,1983)studiedthecrackedpatchin

14、gusingthefiniteelementmethod.ChuandKo(1989)proposedamethodusingcollapsedisoparametricelementtopreservethesingularstresscharacteristicatthecracktip.Butthismethodrequireslargenumberofnodaldegreesoffreedom.Toovercomethisproblem,Atluri(1992)suggestedthefiniteelementalternatingmethod(FEAM)inwhichthemeshn

15、eedsnotbeveryrefinedintheregionofcracks.ChungandYang(2000)studiedthepatch'sefficiencyinviewoffracturemechanicsanddebonding.Andtheysuggestedtheoptimalpatchshapeonthereductionofstressintensityfactor.Aseriesofpreviouslyreportedresultshavesomelimitationonthehypothesisthatthestructureissubjecteduniax

16、ialloading,butmostofthestruc-turalcomponentsaresubjectedtobiaxialloading.Asthecrackdoesnotalignwithoneoftheprincipaldirections,themixedmodebehaviorwillhaveasignificanteffectonthecrackgrowthandfracturemechanics(Chue,etal.,1994).Inthispaper,theanalysisofrepairedskin/stiffenerstructurewithaninclinedcen

17、tralcrackisreported.Thefracturemechanicsanalysisatthecracktipisperformedandexpectationofthecrackpropagationdirectionistobesuggested.2.MethodofAnalysisAschematicdiagramoftheskin/stiffenerstructuretobestudiedisshowninFig.1.Analuminumrectangularskinandl-rypestiffenerpossessacentrallylocatedhorizontalth

18、rough-thicknessinclinedcrack.Topreventthepropaga-tionofcrack,anontapered0/90.boron/epoxycompositepatchisconsidered.FromthestudybyChungetal.(2000)consideringbothfracturemechanicsanddebonding,taperedpatchshapeismoreeffectivethannontaperedpatch.Skin/stiffenerandskin/patcharebondedwithepoxy.Thethickness

19、esplate,adhesivelayerandpatchare3mm,O.lmmand3mm.TheotherdimensionsandthematerialpropertiesaregiveninFig.2andTableI,respectively.Itisassumedthattheskin/stiffenersupportsanuniformtensilestress(0"0)of10MPainthey-Fig.1Configurationofskin/stiffenerplateFig.2Geometryofskin/stiffenerplatewithinclinedc

20、entralcrack(unit:mrn)CharacterizationofFractureBehaviorinRepairedSkin/StiffenerStructurewithanInclinedCentral»-601Table1Materialpropertiesofthealuminum,theboron/epoxypatch,andtheadhesivelayerYoung'smoduliShearmoduliPoisson'sratio(OPa)(OPa)E1E2E3G12G13G23)12)13V23Al-plate71.02-0.32-IPatc

21、h40.16770.16770.Q35Adhesive2.2-0.32-where(Jistheappliedload,aisthehalf-cracklength,andaistheanglebetweenthecracklineandthetensileaxis.Thestressintensityfactorcanalsobeobtainedbyconsideringthedisplacementoverthequar-ter-pointcrack-tipelementsshowninFig.3(a)2.1Stressintensityfa

22、ctorThefractureparameterforthecrackedstructureisoftengivenintermsofthestressintensityfactor.Thestressintensityfactorforacentralslantcrackoflength2ainaninfinitesheetsubjectedtoaremoteuniformuniaxialtensilestressisgivenby(Smith,1988)direction.Owingtosomeofthelimitationsofanalysis,thispaperisbasedonthe

23、followingsimplifiedassumptions.(l)Thecurvatureofthepanelisneglectedandisidealizedasaflatpanel.(2)Thebondingofthepatchandstiffenerisperfectwithoutdebonding.Thealuminumskin/stiffener,theboron/epoxycompositepatchandepoxylayermustremainlinearelastic.(3)Theadhesivelayerthicknessisrelativelythincom-paredt

24、otheplate/patchthickness,sothatageneralizedplanestressconditionisconsidered.Andtheshearstressbetweenplateandpatchistreatedasabodyforce.Theunpatchplatewithaninclinedcentralcracksituationisconsideredfirstforvalidityofthefiniteelementanalysis.Thisanalysisismadetoevaluatethestressintensityfactorsandcrac

25、kpropagationdirectionoftheplateunderserviceloadsintheabsenceofthepatchandstiffener.Theinvestigationofthepatchefficiency,bothofwithoutpatchandwithpatchareconsidered.Kr=(Jfiiisin2aKrr=(Jfiiisinacosa(1)(2)(Cooketal.,1989):KI=K1fIf-(4VB2-Vd-(4VBI-VC1)(3a)K«=KIfIf-(4uB2-ud-(4UBI-UC1)(3b)where,u=E/2(

26、1+II)istheshearmodulusofelasticity,Kisequalto(3-411)forplanestrainand(3-1I)/(1+v)forplanestress,andu.,ViareX-,y-componentsofthecrackopeningdisplacementCOD)atthecollapsedcracktipelements.IngraffaandManu(1980)proposedthecalcu-lationofstressintensityfactorforthethree-dimensionalquarter-pointcrack-tipel

27、ementsshowninFig.3(b).s,4(1V2)j211(2VB-VC+2VE-VF-2vB'+vc,-2vE'1+vp-VD')+217(-4VB+VC(4a)+4VE-vF+4v8'-vc,-4vE'+vp)+i-7l(VF+VC-2VD-vp-vc,+2vD')x,4(11I2)!211(2U8-UC+2UE-UF-2uB'+Uc,-2uE'1+up-UD')+217(-4U8+UC(4b)+4UE-UF+4uB'-Uc-4uE'+up)+7l(UF+Uc-2uD-up-uc·+

28、2uD')where,EandIIaretheYoung'smodulusandthePoisson'sratio,L1isthelengthofquarter-pointelementand17isthelocalcoordinateatthecrackfront,respectively.602Ki-HyunChung,Won-HoYangandSung-PilHeoIY.l'·11'+-1-"""9C2:=_-4ix.uCl(a)(b)Fig.3Arrangementofquarter-pointwedgee

29、lementalongsegmentofcrackfront(6a)(6b)2.2ReductionofstressintensityfactorForthemeasureofthefracturemechanicssafe-tyandpatchingefficiencycriteriaattherepairedcrack,thenondimensionalizedreductionofstressintensityfactorcanbeusedsuchthat(5)where,Ku,Kparethestressintensityfactorsfortheunpatchedandpatched

30、crackplates.Thereductionofstressintensityfactorsisveryimportanttodesignofrepairedcrackedplatebecausethisvalueimpliesthepatchefficiency.AsK*increasesthecrackpropagationde-creases,ontheotherhand,asK*decreasesthepossibilityoffractureincreases.(1963)isoneoftheearliesttheoriesdealingwithstablemixed-modec

31、rackgrowthdirectionunderstaticloading.Itpostulatesthatthecrackwillpropagationinthedirectiongovernedbythemaximumvalueofstressnormaltotheradiallinefromthecracktip.Therefore,thiscriterionassumesamodeIcrackgrowthmechanism.Mathematically,conditionforthecrackgrowthdirectioncanbeexpressedas:aa8=0.(fa8<0

32、ao'a02o;(Oe)=aeFormixed-mode,thecrackgrowthangle0basedonthiscriterionisfoundfromthefollow-ingequation:2.3PredictionofcrackgrowthdirectionInmanymixed-modecrackgrowthanalysis,thepredictionofcrackgrowthdirectionisusuallyconductedonlyattheinitialcracktip.Avarietyoftheoreticalmodelshasbeenproposedfor

33、thepredictionoffatiguecrackgrowthdirectionundermixed-modeloadings.Themaximumtangentialstresscriterion(alsocalledMTS)proposedbyErdoganandSihKr(sin+sin3:)+KI(cos+cos3:)=0(7)orKrsinO+KI(3cosO-I)=0(8)TheminimumstrainenergydensitycriterionwhichisoftencalledtheScriterionwasproposedbySih(1974),andwhichisba

34、sedonthelocaldensityoftheenergyfieldinthecracktipregion.CharacterizationofFractureBehaviorinRepairedSkin/StiffenerStructurewithanInclinedCentralc-603Formixed-modeloading,thefollowingequa-tionbasedonthiscriterionresults:Thecrackisassumedtogrowinthedirectionalongwhichthestrainenergydensityreachesminim

35、umvalue.Thestrainenergydensityfactorisdeterminedby(9)where,ai,canbeexpressedbyangle(8),Young'smodulus(E)andPoisson'sratio(II)andk;aredefinedbyk;=KJ5(i=I,II,JI)(10)asesae=O;a82>0sin28-0.92sin8+4Rk(cos28-cos8)+R/(0.92sin8-3sin8)=0where,RioistheratioKJ!K.3.FiniteElementAnalysis(11)(12)Thecon

36、ditionforcrackgrowthdirectioncanbeexpressedas:(a)(c)Thebasicgeometryofcrackedskin/stiffenerstructureconsideredinthisstudyisshownin(b)Distance(s=80mm)(d)Fig.4Finiteelementmodelingaroundcrack,inclineddegree(0)(a):0°,(b):45°,(c):90°,(d):wholemodelingofS/a=8604Ki-HyunChung,Won-HoYangandSu

37、ng-PitHeoFig.1.Considerathinelasticaluminumsheet240X360X3mmwithancentralcrackoflengthaandIrtypealuminumstiffener.Thebasicrepairconfigurationisa40X80X3mmboron/epoxycompositepatchbondedby0.3mmthickfilm-epoxyadhesive.Onceanefficientmodelisestablished,wewouldinvestigateasetofthisbasicconfigurationtostud

38、ytheeffectofstiffenerdistanceandcrackslantangle.Theslantcrackedsheetissubjectedtoaremoteuniaxialtensileloadof10MPa.Sincetheprob-lemhasnoplaneofsymmetry,itisnecessarytomodelthewholestructurebyusingthree-dimen-sional20-nodeisoparametricbrickelements.Theregionadjacenttothecrackfrontismodelledwiththesin

39、gularcrackelements.Inthesingularelementthemid-sidenodesareshiftedtothequar-ter-pointpositiontoinducetherequired(1/r)1/2stresssingularity(Fig.4).Togetbetterresults,thesingularelementsizesarekeptwithin10%ofthecracklength.FiniteelementanalysisisdoneusingacommercialABAQUScode(version5.8-8).Figure4showst

40、hefiniteelementmodelingforthestiffenerdistance80mmandthedetailconfig-urationofthecrackpartwithrespecttocrackangle.4.ResultsandDiscussionTable2Comparisonofstressintensityfactorforinclinedcrackedrectangularplates(0'0=10MPa,unit:MPav'ffiffi)InclinedSmithPresentCrackModeIiModenModeIModenAngleC&#

41、39;)SIFsiSIFsSIFsSIFs056.06!0i60.380II1054.36I9.60I58.6010.912049.5018.02I53.3420.463042.0424.27I45.3227.594032.9027.60I35.5031.41I4528.0328.03I30.2331.88I5023.1627.60i25.0231.436014.0124.2715.1327.63706.56I18.02I7.0820.52801.699.601.8210.9190000080r-r=;t7010o-"-'-'-"""&q

42、uot;"-'-=901530456075Inclinedcrackangle,8()-=_Nopateh-_hplhs-0.167._hplhs-0.333.-.-_hplhs=O.SOO_.-._-_.=:=:.i3.Smithinfinite)oL-'-'-koHInclinedcrackangle,IJ()7080r:=-r=:=)lFig.6ModenSIFwithrespecttoinclinedcrackangle(0'0=IOMPa)Fig.5ModeISIFwithrespecttoinclinedcrackangle(00=10MP

43、a)4.1RepairofinclinedcrackinunstiffenedpanelsFigures5-6showthestressintensityfactorswithrespecttotheinclinedcrackangle.Thestressintensityfactorsareobtainedintheaveragesensethroughthethickness.Toinvestigatethevalidityoftheresultsobtained,wecomparethosewithotheravailableresults.AscanbeseeninTable2andF

44、igs.5-6,theresultsareingoodagreementwithin7-10%withthoseobtainedbySmith(1988).Theseerrorsmaybecausedbythefactthatthepresentstudyconsidersthefinitemodel,butSmith'sstudyconsideredtheinfinitemodel.Figures7-8showthenondimensionalreductionofSIFwithrespecttovariousinclinedcrackangles.Fromtheresult,the

45、patchisveryefficienttorestrainthecrackgrowth.Ascom-paredwithunpatchedplate,themodeISIFsCharacterizationofFractureBehaviorinRepairedSkin/StiffenerStructurewithanInclinedCentral···605ofpatchedplatearereducedabout20-30%.ModeISIFsofthickpatcharerapidlyde-creasedastheanglebetweenloadingdir

46、ectionandinclinedcrackisdecreased.Oppositely,whenthecrackedinclinedangleisover75°,modeISIFsareincreasedasthethicknessofpatchincreases.Especially,modeISIFisnotzeroat90°ofpatchedplate.Thisphenomenonisduetothepresenceofout-of-planebendingdeformationwhichcausesthenonlinearbehaviorofmaterialand

47、geometry.ModenSIFsofpatchedplatearereducedabyabout30-45%.ThereductionofmodenSIFsisabout0.3-0.4,andwhihisindependentofinclinedangle.Ascanbeconcluded,theeffectofthickerpatchbecomesevenstronger,buttheSIFdoesnotgrowinfinitelyasthepatchthicknessincreasesbecauseoftheout-of-planebendingdeformation.And4.3Re

48、pairofinclinedcrackinstiffenedpanelsTheinfluenceofthedistanceofthestiffenertheeffectofpatchtothemodenbehaviorismoresignificantthanthemodeIbehavior.4.2PredictionofcrackgrowthdirectioninunstiffenedpanelsMostofthestudiesofcrackgrowthundermixedmodeIandnloadingshavebeenconductedusingaplatewithaninclinedc

49、entralcrackundertension.Topredictofcrackgrowthdirection,themaximumtangentialstresscriterionisexamined.Figure9showsthecrackgrowthdirectionattheunrepairedandrepairedplateswithaninclinedcentralcrack.Ascanbeseen,thepatcheffecttothecrackgrowthdirectionisrelativelyslight.Togetherwiththepatchthicknessincre

50、ase,thecrackgrowthdirectionhasatendencytogrowtowardthemodeIdirection.Asinclinedcrackangle(8lapproachesabout50-60°,whichtherangeisequalmodeISIFwithmodenSIF,thecrackgrowthdirectionoftheplaterepairedbycompositepatchbecomesperpendiculartotheapplyloadingdirection.Whentheinclinedangleapproachestheloa

51、d-ingdirection,thedifferencebetweenthepredictedcrackgrowthdirectionoftheoreticalanalysisandpredicteddirectionofpresentanalysisbecomeslanger.So,thecrackgrowthdirectionisunstable.bplhr-O.167_hplbs-O.333-+-hplbs=0.500-e-bplbs-O.667-e-hplbs=O.8334530151=-'._-O.8'<<,.;-0.69075304560Inclined

52、crackangle,8()150«:.-'-'-'-'o-+-Nopatch_hplbs=O.167_hplhs-o.333_hPlbS=O.SOO-e-bpibs-Q.667I.-=:t;J;=.-jhplbs-O.833I-3.Theoretical90.hpihr-Q.167_hplbs-O.333-+-hpihs=O.500-e-hplbs=O.667-e-hplbs-O.83330456075Inclinedcrackangle,8()15oL-'-.-'or.o.0.4.,;0.2."'=0.8"

53、;'=O.6'"'<Fig.8ReductionofmodenSIFwithrespecttoinclinedcrackangleFig.9Predictionofcrackgrowthdirectionfortherepairedplate606Ki-HyunChung,Won-HoYangandSung-Pi/HeoInclinedcrackangle,J()Fig.12ReductionofmodeISIFwithrespecttoinclinedcrackangle90_S16.Suapal<b).S18.0uupal<b)_S1a-

54、9.Suupa«:b).S1a-605pa<<:b).-0.S1.S.0pateb).-0.S1a=9.5(teb)oo8070:;30'"Cil20IS30456075Inclinedcrackangle,J()Fig.10ModeISIFwithrespecttoinclinedcrackangle(10=IOMPa)_S1a-605_S1.-S.0.51.-95<).Unstiffenede····0····<)-0-.&.&.·&

55、#183;e····<)····0HaInclinedcrackangle,J()ReductionofmodeIISIFwithrespecttoinclinedcrackangleooFig.13-.0.8.lei.:.''0.6"=e:0.4e.oS'g0.2_S1a-605uupa<<:b)-1.S1a-S.Ouupaleb)_S1a-905(uupateb).S16.Spa«:b).-0.S1S.Dpa«:b)-1·

56、3;-O··S1a_9.S(pa«:b)HaDInclinedcrackangle,8()Mode.IISIFwithrespecttoinclinedcrackangle(oo=lOMPa)o-'-'-.-'-.:.;o70_60e50l'oo!401-'"lei30f-'"Cil20Fig,111080(S=65mm,80mmand95mm)onthepredictedSIFandreductionofSIFisillustratedinFigs.10-13.Ascanbeseen,thest

57、iffenerlocationhaslessinfluenceontheSIF.But,whenthecracksizeincreases,thedistanceofstiffenerlocationmightbeplayingthemoreimportantroleinthecrackrestraintandcrackgrowthdirection.TheSIFofpatchedskin/stiffenerstructureis·decreasedabout1.5to2timesasmuchasunpatchedskin/stiffenerstructures.Wheninclinedcrackangler

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论