高考物理压轴题的汇编_第1页
高考物理压轴题的汇编_第2页
高考物理压轴题的汇编_第3页
高考物理压轴题的汇编_第4页
高考物理压轴题的汇编_第5页
已阅读5页,还剩99页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、 .wd.高考物理压轴题汇编如下图,在盛水的圆柱型容器内竖直地浮着一块圆柱型的木块,木块的体积为V,高为h,其密度为水密度的二分之一,横截面积为容器横截面积的二分之一,在水面静止时,水高为2h,现用力缓慢地将木块压到容器底部,假设水不会沉着器中溢出,求压力所做的功。解:由题意知木块的密度为/2,所以木块未加压力时,将有一半浸在水中,即入水深度为h/2,木块向下压,水面就升高,由于木块横截面积是容器的1/2,所以当木块上底面与水面平齐时,水面上升h/4,木块下降h/4,即:木块下降h/4,同时把它新占据的下部V/4体积的水重心升高3h/4,由功能关系可得这一阶段压力所做的功压力继续把木块压到容器

2、底部,在这一阶段,木块重心下降,同时底部被木块所占空间的水重心升高,由功能关系可得这一阶段压力所做的功整个过程压力做的总功为:(16分)为了证实玻尔关于原子存在分立能态的假设,历史上曾经有过著名的夫兰克赫兹实验,其实验装置的原理示意图如下图.由电子枪A射出的电子,射进一个容器B中,其中有氦气.电子在O点与氦原子发生碰撞后,进入速度选择器C,然后进入检测装置D.速度选择器C由两个同心的圆弧形电极P1和P2组成,当两极间加以电压U时,只允许具有确定能量的电子通过,并进入检测装置D.由检测装置测出电子产生的电流I,改变电压U,同时测出I的数值,即可确定碰撞后进入速度选择器的电子的能量分布.我们合理简

3、化问题,设电子与原子碰撞前原子是静止的,原子质量比电子质量大很多,碰撞后,原子虽然稍微被碰动,但忽略这一能量损失,设原子未动即忽略电子与原子碰撞过程中,原子得到的机械能.实验说明,在一定条件下,有些电子与原子碰撞后没有动能损失,电子只改变运动方向.有些电子与原子碰撞时要损失动能,所损失的动能被原子吸收,使原子自身体系能量增大,(1)设速度选择器两极间的电压为UV时,允许通过的电子的动能为EkeV,导出EkeV与UV的函数关系设通过选择器的电子的轨道半径r=20.0 cm,电极P1和P2之间隔d=1.00 cm,两极间场强大小处处一样,要说明为什么有些电子不能进入到接收器.(2)当电子枪射出的电

4、子动能Ek=50.0 eV时,改变电压UV,测出电流IA,得出以下图所示的IU图线,图线说明,当电压U为5.00 V、2.88 V、2.72 V、2.64 V时,电流出现峰值,定性分析论述IU图线的物理意义.(3)根据上述实验结果求出氦原子三个激发态的能级EneV,设其基态E1=0.解:(1)当两极间电压为U时,具有速度v的电子进入速度选择器两极间的电场中,所受电场力方向与v垂直,且大小不变,那么电子在两极间做匀速圆周运动,电场力提供向心力,设电子质量为m,电量为e,那么电场力F=qE=eU/d根据牛顿第二定律有eU/d=mv2/R解得电子动能Ek=mv2/2=eUR/2d=10.0U(eV)

5、 (6分)即动能与电压成正比,此结果说明当两极间电压为U时,允许通过动能为10.0UeV的电子,而那些大于或小于10UeV的电子,由于受到过小或过大的力作用做趋心或离心运动而分别落在两电极上,不能到达检测装置D.2IU图线说明电压为5.0 V时有峰值,说明动能为50.0 eV的电子通过选择器,碰撞后电子动能等于入射时初动能,即碰撞中原子没有吸收能量,其能级不变当电压为2.88 V、2.72 V、2.64 V时出现峰值,说明电子碰撞后,动能分别从50.0 eV,变为28.8 eV,27.2 eV、26.4 eV,电子通过选择器进入检测器,它们减小的动能分别在碰撞时被原子吸收,IU图线在特定能量处

6、出现峰值,说明原子能量的吸收是有选择的、分立的、不连续的存在定态.(例如在电压为4.0 V时没有电流,说明碰撞后,电子中没有动能为40.0 eV的电子,即碰撞中,电子动能不可能只损失50.0-40.0eV=10.0 eV,也就是说氦原子不吸收10.0 eV的能量,即10.0 eV不满足能级差要求)(4分)3设原子激发态的能极为En,E1=0,那么从实验结果可知,氦原子可能的激发态能级中有以下几个能级存在:500-288eV=21.2 eV(50.0-27.2)eV=22.8 eV(50.0-26.4)eV=23.6 eV(6分)17.(14分)如图甲,A、B两板间距为,板间电势差为U,C、D两

7、板间距离和板长均为L,两板间加一如图乙所示的电压.在S处有一电量为q、质量为m的带电粒子,经A、B间电场加速又经C、D间电场偏转后进入一个垂直纸面向里的匀强磁场区域,磁感强度为B.不计重力影响,欲使该带电粒子经过某路径后能返回S处.求:(1)匀强磁场的宽度L至少为多少?(2)该带电粒子周期性运动的周期T.(1)AB加速阶段,由动能定理得:偏转阶段,带电粒子作类平抛运动偏转时间侧移量设在偏转电场中,偏转角为那么即由几何关系:45°sin45°那么注:L也可由下面方法求得:粒子从S点射入到出偏转电场,电场力共做功为2q设出电场时速度为,有 解得粒子在磁场中做圆周运动的半径:(2

8、)设粒子在加速电场中运动的时间为那么带电粒子在磁场中做圆周运动的周期实际转过的角度在磁场中运动时间故粒子运动的周期T评分标准:此题14分,第(1)问8分,其中、式各1分,式2分,、式各1分.第(2)问6分,其中 、式各1分,式2分.22.(13分)1951年,物理学家发现了“电子偶数,所谓“电子偶数就是由一个负电子和一个正电子绕它们的质量中心旋转形成的相对稳定的系统.正、负电子的质量均为me,普朗克常数为h,静电力常量为k,假设“电子偶数中正、负电子绕它们质量中心做匀速圆周运动的轨道半径r、运动速度v及电子的质量满足量子化理论:2mevnrn=nh/2,n=1,2,“电子偶数的能量为正负电子运

9、动的动能和系统的电势能之和,两正负电子相距为L时的电势能为Ep=-k,试求n=1时“电子偶数的能量.18.(13分)由量子化理论知 n=1时,2mev1r1=解得设此时电子运转轨道半径为r,由牛顿定律有me由联立可得v1ke2h 系统电势能Ep=-k=2mev12而系统两电子动能为Ek=2×系统能量为E=Ep+Ek-mev12=-2mk2e4h2评分:解答式正确得2分;解答式正确得3分;正确分析系统势能得2分;解答动能正确得3分;正确列式、得出总能量表达式得3分.23.(14分)显像管的工作原理是阴极K发射的电子束经高压加速电场(电压U)加速后垂直正对圆心进入磁感应强度为B、半径为r

10、的圆形匀强偏转磁场,如图11所示,偏转后轰击荧光屏P,荧光粉受激而发光,在极短时间内完成一幅扫描.假设去离子水质不纯,所生产的阴极材料中会有少量SO,SO打在屏上出现暗斑,称为离子斑,如发生上述情况,试分析说明暗斑集中在荧光屏中央的原因电子质量为9.1×1031 kg,硫酸根离子(SO)质量为1.6×1025 kg.23、电子或硫酸根离子在加速电场中 qU=设粒子在偏转磁场中偏转时,轨道半径为R,有:qvB=m那么R=设粒子在偏转磁场中速度偏角为,有:tan故tan由于硫酸根离子荷质比远小于电子的荷质比,高速硫酸根离子经过磁场几乎不发生偏转,而集中打在荧光屏中央,形成暗斑.

11、评分:正确运用动能定理处理粒子在加速电场中的运动得3分;求解粒子在偏转磁场中的轨道半径得3分;正确抓住切入点,求解tan得3分;明确tan与的关系得2分;最后将tan应用于电子和硫酸根离子,得出正确结论得2分. 24.(14分)如图12是用高电阻放电法测电容的实验电路图,其原理是测出电容器在充电电压为U时所带的电荷量Q,从而求出其电容C.该实验的操作步骤如下:按电路图接好实验电路;接通开关S,调节电阻箱R的阻值,使微安表的指针接近满刻度,记下这时的电压表读数U06.2 V和微安表读数I0490 A;断开电键S并同时开场计时,每隔5 s或10 s读一次微安表的读数i,将读数记录在预先设计的表格中

12、;根据表格中的12组数据,以t为横坐标,i为纵坐标,在坐标纸上描点(图中用“×表示),那么:图12(1)根据图示中的描点作出图线.(2)试分析图示中i-t图线下所围的“面积所表示的物理意义.(3)根据以上实验结果和图线,估算当电容器两端电压为U0所带的电量Q0,并计算电容器的电容.24.(14分)(1)根据描点绘出圆滑的曲线如下图.注:(a)绘出折线不得分;(b)绘出的曲线应与横轴相切,否那么酌情扣分.(2)图中i-t图线下所围的“面积表示断开电键后通过电阻R的电量,即电容器两端电压为U0时所带电量为Q.(3)根据绘出图线,估算“面积格数约3233格(此范围内均得分,下同).因此,电

13、容器电容为U0时,带电量(Q0)约为8.00×103 C8.25×103 C由C=得,电容器电容(C)约为:1.30×103 F1.33×103 F评分:(1)绘图正确得4分;(2)“面积意义分析正确得5分;(3)电容计算正确得5分.图1125.(12分)据有关资料介绍,受控核聚变装置中有极高的温度,因而带电粒子将没有通常意义上的“容器可装,而是由磁场约束带电粒子运动使之束缚在某个区域内.现按下面的简化条件来讨论这个问题:如图11所示是一个截面为内径R0.6 m、外径R2=1.2 m的环状区域,区域内有垂直于截面向里的匀强磁场.氦核的荷质比=4.8

14、15;107 C/kg,磁场的磁感应强度B=0.4 T,不计带电粒子重力.(1)实践证明,氦核在磁场区域内沿垂直于磁场方向运动速度v的大小与它在磁场中运动的轨道半径r有关,试导出v与r的关系式.(2)假设氦核在平行于截面从A点沿各个方向射入磁场都不能穿出磁场的外边界,求氦核的最大速度.解:(1)设氦核质量为m,电量为q,以速度v在磁感应强度为B的匀强磁场中做半径为r的匀速圆周运动, Bqv=m(3分)所以v=(2分)(2)当氦核以vm的速度沿与内圆相切方向射入磁场且轨道与外圆相切时,那么以vm速度沿各方向射入磁场均不能穿过磁场(1分)即r0.3 m (2分)由Bqv=知r= (2分)所以vm=

15、5.76×106 m/s (2分)3216分如下图为示波管的原理图,电子枪中炽热的金属丝可以发射电子,初速度很小,可视为零。电子枪的加速电压为U0,紧挨着是偏转电极YY和XX,设偏转电极的极板长均为?,板间距离均为d,偏转电极XX的右端到荧光屏的距离为。电子电量为e,质量为m不计偏转电极YY和XX二者之间的间距、在YY、XX偏转电极上不加电压时,电子恰能打在荧光屏上坐标的原点。求:1假设只在YY偏转电极上加电压,那么电子到达荧光屏上的速度多大?2在第1问中,假设再在XX偏转电板上加上,试在荧光屏上标出亮点的大致位置,并求出该点在荧光屏上坐标系中的坐标值。32解:1经加速电压后电子的速

16、度为,那么有1电子经过YY偏转电极的时间为侧向分速度为,那么有23电子打到荧光屏上的速度等于离开偏转电极时的速度,由123可得42电子在YY偏转电极中的侧向位移为5离开YY偏转电极后的运动时间为、侧向位移为那么有67电子在y方向的位移为8同理:电子在XX偏转电极中的侧向位移为9离开XX后运动时间为,侧向位移为,那么有1011电子在x方向的位移为12光点在荧光屏上的坐标33、如图1所不,A、B为水平放置的平行金属板,板间距离为d(d远小于板的长和宽)。在两板之间有一带负电的质点P。假设在A、B间加电压U0,那么质点P可以静止平衡。现在A、B间加上如图2所示的随时间t变化的电压U,在t=0时质点P

17、位于A、B间的中点处且初速为0。质点P能在A、B之间以最大的幅度上下运动而不与两板相碰,求图2中U改变的各时刻t1、t2、t3及tn的表达式。(质点开场从中点上升到最高点,及以后每次从最高点到最低点或从最低点到最高点的过程中,电压只改变一次。) 设质点P的质量为m,电量大小为q,根据题意,当A、B间的电压为U0时,有: 当两板间的电压为2U0时,P的加速度向上,其大小为a, 解得a=g当两板间的电压为0时,P自由下降,加速度为g,方向向下。在t=0时,两板间的电压为2U0,P自A、B间的中点向上作初速为0的匀加速运动,加速度为g。经过时间1,P的速度变为v1,此时使电压变为0,让P在重力作用下

18、向上作匀减速运动,再经过'1,P正好到达A板且速度变为0。故有:v1=g1 0=v1-g1d= g12+v1'1- g'12由以上各式得:1='1因为t1=1 得 在重力作用下,P由A板处向下做匀加速运动,经过时间2,P的速度变为v2,方向向下。此时加上电压使P向下作匀减速运动,再经过'2,P正好到达B板且速度变为0。故有:v2=g2 0=v2-g'2 d= g22+v2'2- g'22由以上各式得 2='2因为t2=t1+'1+2 得t2=( +1) 在电场力和重力的合力作用下,P又由B板向上作匀加速运动,经过时

19、间3,速度变为v3,此时使电压变为0,让P在重力作用下向上作匀减速运动,经过'3,P正好到达A板且速度变为0。故有:v3=g3 0=v3-g'3 d= g32+v3'3- g'32由上得 3='3因为t3=t2+'2+3 得t3=( +3) 根据上面分析,因重力作用,P由A板向下做匀加速运动,经过2,再加上电压,经过'2,P到达B且速度为0,因t4=t3+'3+2 得t4=( +5) 同样分析可得tn=( +2n-3) (n2)1988N个长度逐个增大的金属圆筒和一个靶,它们沿轴线排列成一串,如下图(图中只画出了六个圆筒,作为示意

20、)各筒和靶相间地连接到频率为、最大电压值为U的正弦交流电源的两端整个装置放在高真空容器中圆筒的两底面中心开有小孔现有一电量为q、质量为m的正离子沿轴线射入圆筒,并将在圆筒间及圆筒与靶间的缝隙处受到电场力的作用而加速(设圆筒内部没有电场)缝隙的宽度很小,离子穿过缝隙的时间可以不计离子进入第一个圆筒左端的速度为v1,且此时第一、二两个圆筒间的电势差V1-V2=-U为使打到靶上的离子获得最大能量,各个圆筒的长度应满足什么条件?并求出在这种情况下打到靶上的离子的能量为使正离子获得最大能量,要求离子每次穿越缝隙时,前一个圆筒的电势比后一个圆筒的电势高U,这就要求离子穿过每个圆筒的时间都恰好等于交流电的半

21、个周期由于圆筒内无电场,离子在筒内做匀速运动设vn为离子在第n个圆筒内的速度,那么有将(3)代入(2),得第n个圆筒的长度应满足的条件为:n=1,2,3N打到靶上的离子的能量为:评分标准:此题共9分列出(1)式给2分;列出(2)式给3分;得出(4)式再给2分;得出(5)式给2分1991在光滑的水平轨道上有两个半径都是r的小球A和B,质量分别为m和2m,当两球心间的距离大于l(l比2r大得多)时,两球之间无相互作用力:当两球心间的距离等于或小于l时,两球间存在相互作用的恒定斥力F.设A球从远离B球处以速度v0沿两球连心线向原来静止的B球运动,如下图.欲使两球不发生接触,v0必须满足什么条件?解一

22、:A球向B球接近至A、B间的距离小于l之后,A球的速度逐步减小,B球从静止开场加速运动,两球间的距离逐步减小.当A、B的速度相等时,两球间的距离最小.假设此距离大于2r,那么两球就不会接触.所以不接触的条件是v1=v2l +s2-s1>2r其中v1、v2为当两球间距离最小时A、B两球的速度;s1、s2为两球间距离从l变至最小的过程中,A、B两球通过的路程.由牛顿定律得A球在减速运动而B球作加速运动的过程中,A、B两球的加速度大小为设v0为A球的初速度,那么由匀加速运动公式得联立解得解二:A球向B球接近至A、B间的距离小于l之后,A球的速度逐步减小,B球从静止开场加速运动,两球间的距离逐步

23、减小.当A、B的速度相等时,两球间的距离最小.假设此距离大于2r,那么两球就不会接触.所以不接触的条件是v1=v2l+s2-s1>2r其中v1、v2为当两球间距离最小时A、B两球的速度;s1、s2为两球间距离从l变至最小的过程中,A、B两球通过的路程.设v0为A球的初速度,那么由动量守恒定律得mv0=mv1+2mv2由动能定理得联立解得评分标准:全题共8分.得出式给1分.得出式给2分.假设式中">"写成""的也给这2分.在写出、两式的条件下,能写出、式,每式各得1分.如只写出、式,不给这3分.得出结果再给2分.假设式中"<&q

24、uot;写成""的也给这2分.1992如下图,一质量为M、长为l的长方形木板B放在光滑的水平地面上,在其右端放一质量为m的小木块A,mM。现以地面为参照系,给A和B以大小相等、方向相反的初速度(如图),使A开场向左运动、B开场向右运动,但最后A刚好没有滑离L板。以地面为参照系。(1)假设A和B的初速度大小为v0,求它们最后的速度的大小和方向。(2)假设初速度的大小未知,求小木块A向左运动到达的最远处(从地面上看)离出发点的距离。解: (1)A刚好没有滑离B板,表示当A滑到B板的最左端时,A、B具有一样的速度。设此速度为V,A和B的初速度的大小为v0,那么由动量守恒可得:Mv

25、0mv0(Mm)V解得:,方向向右(2)A在B板的右端时初速度向左,而到达B板左端时的末速度向右,可见A在运动过程中必经历向左作减速运动直到速度为零,再向右作加速运动直到速度为V的两个阶段。设l1为A开场运动到速度变为零过程中向左运动的路程, l2为A从速度为零增加到速度为V的过程中向右运动的路程,L为A从开场运动到刚到达B的最左端的过程中B运动的路程,如下图。设A与B之间的滑动摩擦力为f,那么由功能关系可知:对于B对于A由几何关系L(l1l2)l由、式解得评分标准:此题8分(1)2分。末速度的大小和方向各占1分。(2)6分。其中关于B的运动关系式(例如式)占1分;关于A的运动关系式(例如、两

26、式)占3分,只要有错,就不给这3分;几何关系(例如式)占1分;求出正确结果,占1分。用其它方法求解,正确的,可参考上述评分标准进展评分。如考生假设直接写出、的合并式那么此式可给2分,再写出式再给3分;最后结果正确再给1分。3、93 一平板车,质量M=100千克,停在水平路面上,车身的平板离地面的高度h=1.25米,一质量m=50千克的小物块置于车的平板上,它到车尾端的距离b=1.00米,与车板间的滑动摩擦系数=0.20,如下图。今对平板车施一水平方向的恒力,使车向前行驶,结果物块从车板上滑落。物块刚离开车板的时刻,车向前行驶的距离s0=2.0米。求物块落地时,落地点到车尾的水平距离s。不计路面

27、与平板车间以及轮轴之间的摩擦。取g=10米/秒2。解法一:设作用于平板车的水平恒力为F,物块与车板间的摩擦力为f,自车启动至物块开场离开车板经历的时间为t,物块开场离开车板时的速度为v,车的速度为V,那么有(F-f)s0=(1/2)MV2f(s0b)(1/2)mv2(F-f)t=MVft=mvf=mg由、得由、式得(Ff)/f(MV)/(mv)由、式得=2米/秒由、式得Vs0/(s0b)v2/(21)×24米/秒由式得物块离开车板后作平抛运动,其水平速度v,设经历的时间为t,所经过的水平距离为s,那么有s=vth (1/2)gt2 由式得s=2×0.5=1米物块离

28、开平板车后,假设车的加速度为a那么aF/M500/1005米/秒2车运动的距离于是s=s-s=2.6-1=1.6米评分标准:全题8分正确求得物块开场离开车板时刻的物块速度v给1分,车的速度V给2分;求得作用于车的恒力F再给1分。正确求得物块离开车板后平板车的加速度给1分。正确分析物块离开车板后的运动,并求得有关结果,正确求出物块下落过程中车的运动距离s并由此求s的正确数值,共给3分。最后结果有错,不给这3分。解法二:设作用于平板车的水平恒力为F,物块与车板间的摩擦力为f,自车启动至物块离开车板经历的时间为t,在这过程中,车的加速度为a,物块的加速度为a。那么有F-f=Maf=maf=mg以及s

29、0(1/2)at2s0b(1/2)at2由、两式得a=g=0.2×10=2米/秒2由、两式得由、两式得F=mg+Ma=0.2×50×10+100×4=500牛顿物块开场离开车板时刻,物块和车的速度分别为v和V,那么物块离车板后作平抛运动,其水平速度为v,所经历的时间为t,走过的水平距离为s,那么有s=vth(1/2)gt2解之得:s=vt=2×0.5=1米在这段时间内车的加速度aF/M500/1005米/秒2车运动的距离s=s-s=2.6-1=1.6米评分标准:全题8分正确求得物块离开车板前,物块和车的加速度a、a2,占2分,求得物块开场离开车

30、板时刻的速度v和此时车的速度V占1分,求得作用于车的恒力F占1分。正确求得物块离开车板后,车的加速度a占1分。正确分析物块离开车板后物块的运动并求得有关结果,正确求得物块下落过程中车的运动距离,并由此求得s的正确结果,共占3分。最后结果错误,不给这3分。1994 如图19-19所示,一带电质点,质量为m,电量为q,以平行于Ox轴的速度v从y轴上的a点射入图中第一象限所示的区域。为了使该质点能从x轴上的b点以垂直于Ox轴的速度v射出,可在适当的地方加一个垂直于xy平面、磁感应强度为B的匀强磁场。假设此磁场仅分布在一个圆形区域内,试求这圆形磁场区域的最小半径.重力忽略不计。解:质点在磁场中作半径为

31、R的圆周运动,qvB(Mv2)/R,得R(MV)/(qB)根据题意,质点在磁场区域中的轨道是半径等于R的圆上的1/4圆周,这段圆弧应与入射方向的速度、出射方向的速度相切。过a点作平行于x轴的直线,过b点作平行于y轴的直线,那么与这两直线均相距R的O点就是圆周的圆心。质点在磁场区域中的轨道就是以O为圆心、R为半径的圆(图中虚线圆)上的圆弧 MN,M点和N点应在所求圆形磁场区域的边界上。在通过M、N两点的不同的圆周中,最小的一个是以MN连线为直径的圆周。所以此题所求的圆形磁场区域的最小半径为:所求磁场区域如图中实线圆所示。1995如图15所示,一排人站在沿x轴的水平轨道旁,原点O两侧的人的序号都记

32、为n(n=1,2,3).每人只有一个沙袋,x>0一侧的每个沙袋质量为m=14千克,x<0一侧的每个沙袋质量m=10千克.一质量为M=48千克的小车以某初速度从原点出发向正x方向滑行.不计轨道阻力.当车每经过一人身旁时,此人就把沙袋以水平速度u朝与车速相反的方向沿车面扔到车上,u的大小等于扔此袋之前的瞬间车速大小的2n倍.(n是此人的序号数)(1)空车出发后,车上堆积了几个沙袋时车就反向滑行?(2)车上最终有大小沙袋共多少个?解:(1)在小车朝正x方向滑行的过程中,第(n-1)个沙袋扔到车上后的车速为Vn-1,第n个沙袋扔到车上后的车速为Vn,由动量守恒定律有M+(n-1)mVn-1

33、2nmVn-1=(M+mn)VnVn=M-(n-1)mVn-1÷(M+mn)小车反向运动的条件是:Vn-1>0,Vn<0,即M-nm>0M-(n+1)m<0代入数字,得:nM/m=48/14n(M/m)-1=34/14n应为整数,故n=3,即车上堆积3个沙袋后车就反向滑行.(2)车自反向滑行直到接近x<0一侧第1人所在位置时,车速保持不变,而车的质量为M+3m.假设在朝负x方向滑行过程中,第(n-1)个沙袋扔到车上后车速为Vn-1,第n个沙袋扔到车上后车速为Vn,现取在图中向左的方向(负x方向)为速度Vn、Vn-1的正方向,那么由动量守恒定律有车不再向左

34、滑行的条件是 M+3m+(n-1)mVn-12nmVn-1=(M+3m+nm)VnVn=M+3m(n-1)mVn-1÷(M+3m+nm)Vn-1>0,Vn0即M+3m-nm>0M+3m-(n+1)m0或:n(M+3m)÷m=9n(M+3m)÷m1=88n9n=8时,车停顿滑行,即在x<0一侧第8个沙袋扔到车上后车就停住.故车上最终共有大小沙袋3+8=11个.评分标准:全题12分.第(1)问4分:求得式给2分,正确分析车反向滑行条件并求得反向时车上沙袋数再给2分.(假设未求得式,但求得第1个沙袋扔到车上后的车速,正确的也给2分。通过逐次计算沙袋扔到

35、车上后的车速,并求得车开场反向滑行时车上沙袋数,也再给2分.)第(2)问8分:求得式给3分,式给1分,式给2分。求得式给1分。得到最后结果再给1分。(假设未列出、两式,但能正确分析并得到左侧n=8的结论,也可给上述、式对应的4分.)1996设在地面上方的真空室内存在匀强电场和匀强磁场。电场强度和磁感应强度的方向是一样的,电场强度的大小E4.0伏/米,磁感应强度的大小B0.15特。今有一个带负电的质点以v20米/秒的速度在此区域内沿垂直场强方向做匀速直线运动,求此带电质点的电量与质量之比q/m以及磁场的所有可能方向(角度可用反三角函数表示)。解:根据带电质点做匀速直线运动的条件,得知此带电质点所

36、受的重力、电场力和洛仑兹力的合力必定为零。由此推知此三个力在同一竖直平面内,如右图所示,质点的速度垂直纸面向外。解法一:由合力为零的条件,可得求得带电质点的电量与质量之比代入数据得因质点带负电,电场方向与电场力方向相反,因而磁场方向也与电场力方向相反。设磁场方向与重力方向之间夹角为,那么有qEsinqvBcos,解得tg=vB/E=20×0.15/4.0,arctg0.75即磁场是沿着与重力方向夹角arctg0.75,且斜向下方的一切方向。解法二:因质点带负电,电场方向与电场力方向相反,因而磁砀方向也与电场力方向相反。设磁场方向与重力方向间夹角为,由合力为零的条件,可得qEsinqv

37、Bcos,qEcosqvBsinmg,解得,代入数据得q/m1.96库/千克tg=vB/E=20×0.15/4.0,arctg0.75即磁场是沿着与重力方向成夹角arctg0.75,且斜向下方的一切方向。1997如图1所示,真空室中电极K发出的电子初速不计经过U01000伏的加速电场后,由小孔S沿两水平金属板A、B间的中心线射入。A、B板长l0.20米,相距d0.020米,加在A、B两板间电压u随时间t变化的u-t图线如图2所示。设A、B间的电场可看作是均匀的,且两板外无电场。在每个电子通过电场区域的极短时间内,电场可视作恒定的。两板右侧放一记录圆筒,筒在左侧边缘与极板右端距离b0.

38、15米,筒绕其竖直轴匀速转动,周期T0.20秒,筒的周长s0.20米,筒能接收到通过A、B板的全部电子。 1以t0时见图2,此时u0电子打到圆筒记录纸上的点作为xy坐标系的原点,并取y轴竖直向上。试计算电子打到记录纸上的最高点的y坐标和x坐标。不计重力作用 2在给出的坐标纸图3上定量地画出电子打到记录纸上的点形成的图线。 解:1计算电子打到记录纸上的最高点的坐标设v0为电子沿A、B板的中心线射入电场时的初速度,那么 电子在中心线方向的运动为匀速运动,设电子穿过A、B板的时间为t0,那么 lv0t0 电子在垂直A、B板方向的运动为匀加速直线运动。对于恰能穿过A、B板的电子,在它通过时加在两板间的

39、电压uc应满足 联立、式解得u02d2/12U020伏 此电子从A、B板射出时沿y方向的分速度为vy eu0/mdt0 此后,此电子作匀速直线运动,它打在记录纸上的点最高,设纵坐标为y,由图1可得yd/2/bvy/v0 由以上各式解得ybd/ld/22.5厘米 从题给的u-t图线可知,加于两板电压u的周期T00.10秒,u的最大值um100伏,因为uc<um,在一个周期T0内,只有开场的一段时间间隔t内有电子通过A、B板tuc/umT0 因为电子打在记录纸上的最高点不止一个,根据题中关于坐标原点与起始记录时刻的规定,第一个最高点的x坐标为x1tT/s2厘米第二个最高点的x坐标为x2tT0

40、/s12厘米 第三个最高点的x坐标为x3t2T/Ts22厘米由于记录筒的周长为20厘米,所以第三个最高点已与第一个最高点重合,即电子打到记录纸上的最高点只有两个,它们的x坐标分别由和表示2电子打到记录纸上所形成的图线,如图2所示。评分标准:此题12分。 第1问10分,、式各1分,式2分,、式各1分。1998 一段凹槽A倒扣在水平长木板C上,槽内有一小物块B,它到槽两内侧的距离均为l/2,如下图。木板位于光滑水平的桌面上,槽与木板间的摩擦不计,小物块与木板间的摩擦系数为。A、B、C三者质量相等,原来都静止。现使槽A以大小为v0的初速向右运动,v0。当A和B发生碰撞时,两者速度互换。求:1从A、B

41、发生第一次碰撞到第二次碰撞的时间内,木板C运动的路程。2在A、B刚要发生第四次碰撞时,A、B、C三者速度的大小。解:(1)A与B刚发生第一次碰撞后,A停下不动,B以初速v0向右运动。由于摩擦,B向右作匀减速运动,而C向右作匀加速运动,两者速率逐渐接近。设B、C到达一样速度v1时B移动的路程为s1。设A、B、C质量皆为m,由动量守恒定律,得mv0=2mv1由功能关系,得mgs1=2mv02/2-mv12/2由得 v1=v0/2代入式,得 s1=3v02/(8g)根据条件 v0<,得s1<3l/4 可见,在B、C到达一样速度v1时,B尚未与A发生第二次碰撞,B与C一起将以v1向右匀速运

42、动一段距离(l-s1)后才与A发生第二次碰撞。设C的速度从零变到v1的过程中,C的路程为s2。由功能关系,得mgs2=mv12/2 解得 s2=v02/(8g)因此在第一次到第二次碰撞间C的路程为s=s2+l-s1=l-v02/(4g)(2)由上面讨论可知,在刚要发生第二次碰撞时,A静止,B、C的速度均为v1。刚碰撞后,B静止,A、C的速度均为v1。由于摩擦,B将加速,C将减速,直至到达一样速度v2。由动量守恒定律,得mv1=2mv2解得 v2=v1/2=v0/4因A的速度v1大于B的速度v2,故第三次碰撞发生在A的左壁。刚碰撞后,A的速度变为v2,B的速度变为v1,C的速度仍为v2。由于摩擦

43、,B减速,C加速,直至到达一样速度v3。由动量守恒定律,得mv1+mv2=2mv3解得v3=3v0/8 故刚要发生第四次碰撞时,A、B、C的速度分别为vA=v2=v0/4vB=vC=v3=3v0/81999图中虚线MN是一垂直纸面的平面与纸面的交线,在平面右侧的半空间存在一磁感强度为B的匀强磁场,方向垂直纸面向外是MN上的一点,从O 点可以向磁场区域发射电量为q、质量为m 、速率为的粒于,粒于射入磁场时的速度可在纸面内各个方向先后射人的两个粒子恰好在磁场中给定的P点相遇,P到0的距离为L不计重力及粒子间的相互作用。(1)求所考察的粒子在磁场中的轨道半径;(2)求这两个粒子从O点射人磁场的时间间

44、隔。解答:(1)设粒子在磁场中作圆周运动的轨道半径为R,由牛顿第二定律,有qvB=mv2/R得R=mv/qB (2)如下图,以OP为弦可画两个半径一样的圆,分别表示在P点相遇的两个粒子的轨道。圆心和直径分别为 O1、O2和OO1Q1,OO2Q2,在0处两个圆的切线分别表示两个粒子的射入方向,用表示它们之间的夹角。由几何关系可知PO1Q1=PO2Q2 从0点射入到相遇,粒子1的路程为半个圆周加弧长Q1PQ1PP 粒子2的路程为半个圆周减弧长PQ2=2PQ2=R 粒子1运动的时间t1=(1/2T)+(R/v) 其中T为圆周运动的周期。粒子2运动的时间为t2=(1/2T)-(R/v) 两粒子射入的时

45、间问隔t=t1-t2=2R/V 因 Rcos(/2) =1/2L得 =2arccos (L/2R) 由、三式得t=4marccos(lqB/2mv)/qB2000在原子核物理中,研究核子与核关联的最有效途径是“双电荷交换反响。这类反响的前半局部过程和下述力学模型类似。两个小球A和B用轻质弹簧相连,在光滑的水平直轨道上处于静止状态。在它们左边有一垂直于轨道的固定挡板P,右边有一小球C沿轨道以速度射向B球,如下图。C与B发生碰撞并立即结成一个整体D。在它们继续向左运动的过程中,当弹簧长度变到最短时,长度突然被锁定,不再改变。然后,A球与挡板P发生碰撞,碰后A、D都静止不动,A与P接触而不粘连。过一

46、段时间,突然解除锁定锁定及解除定均无机械能损失。A、B、C三球的质量均为m。1求弹簧长度刚被锁定后A球的速度。2求在A球离开挡板P之后的运动过程中,弹簧的最大弹性势能。解答:1设C球与B球粘结成D时,D的速度为,由动量守恒,有当弹簧压至最短时,D与A的速度相等,设此速度为,由动量守恒,有由、两式得 A的速度2设弹簧长度被锁定后,贮存在弹簧中的势能为,由能量守恒,有撞击P后,A与D的动能都为零,解除锁定后,当弹簧刚恢复到自然长度时,势能全部转变成D的动能,设D的速度为,那么有当弹簧伸长,A球离开挡板P,并获得速度。当A、D的速度相等时,弹簧伸至最长。设此时的速度为,由动量守恒,有当弹簧伸到最长时

47、,其势能最大,设此势能为,由能量守恒,有解以上各式得2000上海12分风洞实验室中可以产生水平方向的、大小可调节的风力,现将一套有小球的细直杆放入风洞实验室,小球孔径略大于细杆直径。1当杆在水平方向上固定时,调节风力的大小,使小球在杆上作匀速运动,这时小班干部所受的风力为小球所受重力的0.5倍,求小球与杆间的滑动摩擦因数。2保持小球所受风力不变,使杆与水平方向间夹角为37°并固定,那么小球从静止出发在细杆上滑下距离S所需时间为多少?sin37°=0.6,cos37°=0.81设小球所受的风力为F,小球质量为2设杆对小球的支持力为N,摩擦力为沿杆方向垂直于杆方向可解

48、得评分标准:13分。正确得出式,得3分。仅写出式,得1分。29分,正确得出式,得6分,仅写出、式,各得2分,仅写出式,得1分,正确得出式,得3分,仅写出式,得2分,g用数值代入的不扣分。24.13分阅读如下资料并答复以下问题:自然界中的物体由于具有一定的温度,会不断向外辐射电磁波,这种辐射因与温度有关,称为势辐射,势辐射具有如下特点:辐射的能量中包含各种波长的电磁波;物体温度越高,单位时间从物体外表单位面积上辐射的能量越大;在辐射的总能量中,各种波长所占的百分比不同。处于一定温度的物体在向外辐射电磁能量的同时,也要吸收由其他物体辐射的电磁能量,如果它处在平衡状态,那么能量保持不变,假设不考虑物

49、体外表性质对辐射与吸收的影响,我们定义一种理想的物体,它能100%地吸收入射到其外表的电磁辐射,这样的物体称为黑体,单位时间内从黑体外表单位央积辐射的电磁波的总能量与黑体绝对温度的四次方成正比,即,其中常量瓦/米2·开4。在下面的问题中,把研究对象都简单地看作黑体。有关数据及数学公式:太阳半径千米,太阳外表温度开,火星半径千米,球面积,其中R为球半径。1太阳热辐射能量的绝大多数集中在波长为2×109米1×104米范围内,求相应的频率范围。2每小量从太阳外表辐射的总能量为多少?3火星受到来自太阳的辐射可认为垂直射可认为垂直身到面积为为火星半径的圆盘上,太阳到火星的距

50、离约为太阳半径的400倍,忽略其它天体及宇宙空间的辐射,试估算火星的平均温度。解:1赫赫辐射的频率范围为3×1012赫1.5×1017赫2每小量从太阳外表辐射的总能量为代入数所得W=1.38×1010焦 3设火星外表温度为T,太阳到火星距离为,火星单位时间内吸收来自太阳的辐射能量为火星单位时间内向外辐射电磁波能量为火星处在平衡状态即由式解得火星平均温度开评分标准:全题13分1正确得了,式,各得1分。2正确得出式,得5分,仅写出式,得3分。3正确得出式,得4分,仅写出式或式,得1分;仅写出式,得1分,正确得出式,得1分。2001年江苏、安徽、福建卷3128分太阳现正

51、处于主序星演化阶段。它主要是由电子和、等原子核组成。维持太阳辐射的是它内部的核聚变反响,核反响方程是2e+4+释放的核能,这些核能最后转化为辐射能。根据目前关于恒星演化的理论,假设由于聚变反响而使太阳中的核数目从现有数减少10,太阳将离开主序垦阶段而转入红巨星的演化阶段。为了简化,假定目前太阳全部由电子和核组成。1为了研究太阳演化进程,需知道目前太阳的质量M。地球半径R=6.4×106 m,地球质量m=6.0×1024kg,日地中心的距离r=1.5×1011m,地球外表处的重力加速度g=10m/s2,1年约为3.2×107秒。试估算目前太阳的质量M。2质

52、子质量mp=1.6726×1027 kg,质量m=6.6458×1027kg,电子质量me=0.9×1030 kg,光速c=3×108 m/s。求每发生一次题中所述的核聚变反响所释放的核能。3又知地球上与太阳光垂直的每平方米截面上,每秒通过的太阳辐射能w=1.35×103 W/m2。试估算太阳继续保持在主序星阶段还有多少年的寿命。估算结果只要求一位有效数字。参考解答:1估算太阳的质量M设T为地球绕日心运动的周期,那么由万有引力定律和牛顿定律可知地球外表处的重力加速度由、式联立解得以题给数值代入,得M2×1030 kg2根据质量亏损和质

53、能公式,该核反响每发生一次释放的核能为E=4mp+2memc2代入数值,解得E=4.2×1012 J3根据题给假定,在太阳继续保持在主序星阶段的时间内,发生题中所述的核聚变反响的次数为×10%因此,太阳总共辐射出的能量为EN·E设太阳辐射是各向同性的,那么每秒内太阳向外放出的辐射能为=4r2w所以太阳继续保持在主序星的时间为由以上各式解得以题给数据代入,并以年为单位,可得t=1×1010 年=1 百亿年评分标准:此题28分,其中第1问14分,第2问7分。第3问7分。第1问中,、两式各3分,式4分,得出式4分;第2问中式4分,式3分;第3问中、两式各2分,

54、式2分,式1分。2001年北京卷如下图,A、B是静止在水平地面上完全一样的两块长木板。A的左端和B的右端相接触。两板的质量皆为,长度皆为C是一质量为的小物块现给它一初速度,使它从B板的左端开场向右滑动地面是光滑的,而C与A、B之间的动摩擦因数皆为求最后A、B、C各以多大的速度做匀速运动取重力加速度22参考解答:先假设小物块C在木板B上移动距离后,停在B上这时A、B、C三者的速度相等,设为V由动量守恒得在此过程中,木板B的位移为,小木块C的位移为由功能关系得相加得解、两式得代入数值得板的长度在这说明小物块C不会停在B板上,而要滑到A板上设C刚滑到A板上的速度为,此时A、B板的速度为,那么由动量守

55、恒得由功能关系得以题给数据代入解得由于必是正数,故合理的解是,当滑到A之后,B即以做匀速运动而C是以的初速在A上向右运动设在A上移动了距离后停顿在A上,此时C和A的速度为,由动量守恒得解得由功能关系得解得比A板的长度小,故小物块C确实是停在A板上最后A、B、C的速度分别为,评分标准:此题14分正确论证了C不能停在B板上而是停在A板上,占8分求出A、B、C三者的最后速度,占6分2001年全国卷,广东卷一个圆柱形的竖直的井里存有一定量的水,井的侧面和底部是密闭的,在井中固定地插着一根两端开口的薄壁圆管,管和井共轴,管下端未触及井底. 在圆管内有一不漏气的活塞,它可沿圆管上下滑动.开场时,管内外水面相齐,且活塞恰好接触水面,如下图. 现用卷扬机通过绳子对活塞施加一个向上的力F,使活塞缓慢向上移动,管筒半径r0.100m,井的半径R2r,水的密度r1.00

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论