(最终)2015年土石坝毕业设计_第1页
(最终)2015年土石坝毕业设计_第2页
(最终)2015年土石坝毕业设计_第3页
(最终)2015年土石坝毕业设计_第4页
(最终)2015年土石坝毕业设计_第5页
已阅读5页,还剩87页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、毕 业 设 计E江水利枢纽工程土石坝设计说明与计算书题 目:E江水利枢纽工程设计专 业:水利水电工程年 级:2011级学 生:温绍成 学 号:3120141994指导教师:张继勋日 期:2015年4月13日目 录前 言11工程提要11.1工程等别及建筑物级别11.2洪水调节计算11.3坝型选择与枢纽布置21.4大坝设计21.5泄水建筑物设计31.6施工组织设计32基本资料42.1水文42.2工程地质52.3建筑材料82.4经济资料103工程等别及建筑物级别114洪水调节计算124.1防洪标准124.2设计洪水124.3调洪演算135坝型选择与枢纽布置165.1坝址及坝型选择165.2枢纽布置1

2、76大坝设计196.1土石坝坝型的选型196.2大坝轮廓尺寸的拟定206.3土料设计266.4渗流计算296.5稳定计算336.6基础处理部分346.7细部构造设计357泄水建筑物设计387.1泄水方案选择387.2隧洞选择与布置387.3隧洞的体型设计387.4隧洞的水力计算407.5隧洞的细部构造437.6放空洞设计438施工组织设计458.1施工导流计划458.2施工控制性进度47前言根据教学大纲要求,学生在毕业前必须完成毕业设计。毕业设计是大学学习的重要环节,对培养工程技术人员独立承担专业工程技术任务重要。通过毕业设计可以进一步培养和训练我们分析和解读工程实际问题及科学研究的能力。通过

3、毕业设计,我们能够系统巩固并综合运用基本理论和专业知识,熟悉和掌握有关的资料、规范、手册及图表,培养我们综合运用上述知识独立分析和解决工程设计问题的能力,培养我们对土石坝设计计算的基本技能,同时了解国内外该行业的发展水平。这次我的设计任务是E江水利枢纽工程设计(土石坝),本设计采用斜心墙坝。该斜心墙土石坝设计大致分为:洪水调节计算、坝型选择与枢纽布置、大坝设计、泄水建筑物的选择与设计等部分。371 工程提要E江水利枢纽系防洪、发电、灌溉、渔业等综合利用的水利工程,该水利枢纽工程由土石坝、泄洪隧洞、冲沙放空洞、引水隧洞、发电站等建筑物组成。该工程建成以后,可减轻洪水对下游城镇、厂矿和农村的威胁,

4、根据下游防洪要求,设计洪水时最大下泄流量限制为900,本次经调洪计算100年一遇设计洪水时,下泄洪峰流量为672.6。原100年一遇设计洪峰流量为1680,水库消减洪峰流量1007.4;其发电站装机为3×8000kw,共2.4×104kw;建成水库增加保灌面积10万亩,正常蓄水位时,水库面积为17.70km2,为发展养殖创造了有利条件。综上该工程建成后发挥效益显著。1.1 工程等别及建筑物级别根据SDJ12-1978水利水电枢纽工程等级划分设计标准(山区,丘陵区部分)之规定,水利水电枢纽工程根据其工程规模效益及在国民经济中的重要性划分为五类,综合考虑水库的总库容、防洪库容、

5、灌溉面积、电站的装机容量等,工程规模由库容决定,由于该工程正常蓄水位为2821.4m,库容约为3.85亿m3,估计校核情况下的库容不会超过10亿m3,故根据标准(SDJ12-1978),该工程等别为二等,工程规模属于大(2)型,主要建筑物为2级,次要建筑物为3级,临时性建筑物级别为4级。1.2 洪水调节计算该工程主要建筑物级别为2级,根据防洪标准(GB50201-94)规定2级建筑物土坝堆石坝的防洪标准采用100年一遇设计,2000年一遇校核,水电站厂房防洪标准采用50年一遇设计,500年一遇校核。临时性建筑物防洪标准采用20年一遇标准。根据资料统计分析得100年一遇设计洪峰流量为=(p=1%

6、),2000年一遇校核洪峰流量为=2320m3/s,()。根据选定的方案调洪演算的设计洪水位2822.60m,校核洪水位2823.58m,设计泄洪流量672.6m3/s,校核泄洪流量753.7m3/s。1.3 坝型选择与枢纽布置通过各种不同的坝型进行定性的分析比较,综合考虑地形条件、地质条件、建筑材料、施工条件、综合效益等因素,最终选择土石坝的方案。根据工程功能以及满足正常运行管理要求,该枢纽由土石坝、泄洪隧洞、冲沙放空洞、水电站(包括:引水隧洞、调压井、压力管道、电站厂房、开关站)等建筑物组成。本次根据工程经济性、正常运行安全稳定性以及地形地质条件等各方面因素要求,并且将冲沙放空洞和泄洪隧洞

7、与施工导流隧洞相结合对枢纽建筑物进行了布置。枢纽平面布置见图5.2。1.4 大坝设计根据方案比较分析,斜心墙坝综合了心墙坝与斜墙坝的优缺点,斜心墙有足够的斜度,能减弱坝壳对心墙的拱效应作用;斜心墙坝对下游支承棱体的沉陷不如斜墙那样敏感,斜心墙坝的应力状态较好,本次设计大坝坝型采用粘土斜心墙坝。根据计算大坝坝顶高程由校核情况控制为2825.17m,取2825.2m。最大坝高为75.2m,大于70m,属高坝,故综合各方面因素可取该土石坝坝顶宽度为10m。根据规范规定与实际结合,上游坝坡上部取2.5,下部取3.0,下游自上而下均取2.50,下游在2800m、2775m高程处各变坡一次。在坝坡改变处,

8、尤其在下游坡,通常设置1.52宽的马道(戗道)以使汇集坝面的雨水,防止冲刷坝坡,并同时兼作交通、观测、检修之用,综合上述等各方面因素其宽度取为2.0。本次设计,大坝坝脚排水体采用棱体排水措施,按规范棱体顶面高程高出下游最高水位1m为原则,校核洪水时下游水位可由坝址流量水位曲线查得为2755.22m,最后取棱体顶面高程为2756.3m,堆石棱体内坡取1:1.5,外坡取1:2.0,顶宽2.0m,下游水位以上用贴坡排水。大坝坝体防渗采用粘土斜心墙,坝基采用混凝土防渗墙。1.5 泄水建筑物设计坝址地带河谷较窄,山坡陡峻,山脊高,经过比较枢纽布置于河弯地段。由于两岸山坡陡峻,无天然垭口如采取明挖溢洪道的

9、泄洪方案,开挖量大,造价较高,故采用了隧洞泄洪方案。隧洞布置于岸(右岸),采取“龙抬头”无压泄洪的型式与施工导流洞结合。为满足水库放空水位2770.0m的要求,还与导流洞结合设置了放空洞。根据调洪演算和计算比选确定溢流孔口尺寸7m×15.5m洞身尺寸为7m11.0m,根据以往经验溢流孔口后以1:1坡度连接,反弧段以60.0m半径圆弧相连接,见图7.1隧洞纵坡面布置。1.6 施工组织设计本工程拟定2008年开工,从截流开始到大坝填筑完毕计4年,在现有施工能力及保证质量的前提下,尽可能缩短工期,提早发挥效益。(1)截流和拦洪日期.针对该河流的水文特性,11月开始流量明显下降,此时水深只有

10、1.0m左右,因此,设计截流日期定为2008年11月1日15日。实际施工中,根据当时的水文、气象条件及实际水情进行调整。2009年5月洪水期开始,围堰开始拦洪,围堰上升速度应以抢修到拦洪水位以上为原则。(2)封孔及发电日期,鉴于流量资料不足。为安全起见在大坝上升至泄洪隧洞进口高程以后进行封孔。斜心墙坝填筑要求粘土与砂砾同时上升。施工进度由粘土上升速度控制。按4m/月的速度上升,至泄洪洞高程(2810m)需15月,即到2010年7月。因此定在2010年8月1日进行封孔蓄水。水库蓄水过程一般按80%90%的保证率的流量过程线来预测,初始发电水位为70%工作水深,即2808.5m。根据计算从8月1日

11、封孔蓄水,到9月底即可蓄到初始发电水位。因此第一台机组发电日期定为2010年10月1日。实际发电日期根据当时水文、气象条件及水情进行调整。(3)大坝竣工日期。按4m/月的速度上升,在2010年底实现大坝填筑完成。2 基本资料2.1 水文2.1.1 流域概况E江位于我国西南地区,流向自东向西北,全长约122km,流域面积2558km2,在坝址以上流域面积为780km2。本流域大部分为山岭地带,山脉、盆地相互交错于其间,地形变化剧烈,流域内支流很多,但多为小的山区河流,地表大部分为松软沙岩、页岩、玄武岩及石灰岩的风化层,汛期河流含沙量较大,冲积层较厚,两岸有崩塌现象。本流域内因山脉连绵,交通不便,

12、故居民较少,全区农田面积仅占总面积的20%,林木面积约占全区的30%,其种类有松、杉等。其余为荒山及草皮覆盖。2.1.2 气象降雨(1) 气象本区域气候特征是冬干夏湿,每年11月至次年四月特别干燥,其相对湿度在51%73%之间,夏季因降雨日数较多,相对湿度随之增大,一般变化范围为67%86%。该地区一般14月风力较大,实测最大风速为15m/s,风向为西北偏西,水库吹程为12km。年平均气温约为12.8,最高气温为30.5,发生在7月份,最低气温-5.3,发生在1月份,见表2.1.1、2.1.2。表2.1.1 月平均气温统计表()月份123456月平均气温4.88.311.214.816.318

13、.0月份789101112气温18.818.316.012.48.65.912.8表2.1.2 平均温度日数(天)月温度()123456789101112061.20.3000000003.10302526.830.7303130313130313027.930000000000000(2) 降雨该地区最大年降水量可达1213mm,最小为617mm,多年平均降水量为905mm。表2.1.3 多年平均各月降雨日数统计表月降雨量1234567891011125mm2.62.24.34.27.08.611.58.59.69.54.84.3510mm0.30.20.21.42.02.42.72.72.

14、62.40.80.11030mm0.10.10.70.52.34.64.93.82.21.30.60.1>30mm0000000000002.1.3 径流E江径流的主要来源于降水,在此山区流域内无湖泊调节径流。根据短期水文气象资料研究,一般是每年五月底至六月初河水开始上涨,汛期开始,至十月以后洪水下降,则枯水期开始,直至次年五月。E江洪水形状陡涨猛落,峰高而瘦,具有山区河流的特性,实测最大流量为700,而最小流量为0.5。多年平均流量17。经频率分析,求得不同频率的洪峰流量见表2.1.4、2.1.5。表2.1.4多年统计不同频率洪峰流量频率(%)0.0512510流量()23201680

15、142011801040表2.1.5各月不同频率洪峰流量(单位:)月份P1234567891011121%4619121960012401550121067039028372%3617111553011201360109060031023335%23149114208501100830480250162810%1911793707609807204102101523固体径流:E江为山区性河流,含沙量大小均随降水强度及降水量的大小而变化,平均含沙量达0.5kg/m3。枯水期极小,河水清澈见底,初步估算30年后坝前淤积高程为2765m。2.2 工程地质2.2.1 水库地质库区内出露的地层有石灰岩、

16、玄武岩、火山角砾岩与凝灰岩等。经地质勘探认为库区渗漏问题不大,但水库蓄水后,两岸的坡积与残积等物质的坍岸是不可避免的,经过勘测,估计可能塌方量约为300万m3,在考虑水库淤积问题时可作为参考。2.2.2 坝址地质坝址位于E江中游地段的峡谷地带,河床比较平缓,坡降不太大,两岸高山耸立,构成高山深谷的地貌特征。坝址区地层以玄武岩为主,间有少量火山角砾岩和凝灰岩穿构,对其岩性分述如下:(1) 玄武岩一般为深灰色、灰色、有含泥量气孔,为绿泥石、石英等充填,成为杏仁状构造,并间或有方解石石脉,石英脉等穿其中,这些小脉都是后来沿裂隙充填进来的。坚硬玄武岩应为不透水层,但因节理裂缝较发育,透水性也会随之增加

17、,其矿物成份为普通辉石、检长石、副成分为绿泥石、石英、方解石等。由于玄武岩成分不甚一致,风化程度不同,力学性质亦异,可分为坚硬玄武岩、多孔玄武岩,破碎玄武岩、软弱玄武岩、半风化玄武岩和全风化玄武岩。其物理力学性质见表2.2.1、2.2.2。表2.2.1 坝基岩石物理力学性质试验表岩石名称比 重容重(KN/m3)采用抗压强度(MPa)半风化玄武岩3.0129.650破碎玄武岩2.9529.25060火山角砾岩2.9028.735120软弱玄武岩2.8527.01020坚硬玄武岩2.9629.2100160多气孔玄武岩2.8527.870180表2.2.2 全风化玄武岩物理力学性质试验表天然含水率

18、W%干容重KN/比重液限Wl塑限Wp塑性指数IP压缩系数浸水固结块剪力00.5cm3/KN34cm3/KN内摩擦角凝聚力KPa2.516.32.9747.332.2616.90.05970.015128.3824.0渗透性:经试验得出发值为4.147.36m/d。(2) 火山角砾岩角砾为玄武岩,棱角往往不明显,直径为215cm,胶结物仍为玄武岩质,胶结紧密者抗压强度与坚硬玄武岩无异,其胶结程度较差者极限抗压强度低至350Mpa。(3) 凝灰岩成土状或页片状,岩性软弱,与砂质粘土近似,风化后成为粘土碎屑的混合物,遇水崩解,透水性很小。(4) 河床冲积层主要为卵砾石类土,砂质粘土与砂层均甚少,且多

19、呈透镜体状,并有大漂石渗杂其中,卵砾石成分以玄武岩为主,石灰岩和砂岩占极少数,沿河谷内分布。坝基部分冲积层厚度最大为32m,一般为20米左右。靠岸边最少为几米。颗粒组成以卵砾石为主,砂粒和细小颗粒为数很少。卵石最小直径一般为10100mm;砾石直径一般为210mm;砂粒直径0.050.2mm;细小颗粒小于0.1mm。冲积层的渗透性能:经抽水试验后得渗透系数K值为3×10-2cm/s1.0×10-2cm/s。冲积层剪力实验成果见表2.2.3。表2.2.3 冲积层剪力试验成果表土壤名称项目计算值容重(控制)KN/m3含水量(控制)三轴剪力(块剪)应变控制浸水固结快剪内摩擦角凝聚

20、力KPa内摩擦角凝聚力KPa含中量细粒的砾石次数17128822最大值24.38.6647°1537.032°5410.5最小值22.24.2735°3012.017°550平均值23.086.4740°3418.225°255.3小值平均值37°320.148备注三轴剪力土样控制系筛去大于4颗粒后制备的。试验时土样的容重为控制容重。应变控制土样的容重系筛去大于0.1后制备的。以上两种试验的土样系扰动的。(5) 坡积层在水库区及坝址区山麓地带均可见到,为经短距离搬运沉积后,形成粘土与碎石的混合物质。2.2.3 地质构造坝址附

21、近无大的断层,但两岸露出的岩石、节理特别发育,可以分为两组,一组走向与岩层走向几乎一致,即北东方向,倾向西北;另一组的走向与岩层倾向大致相同,倾角一般都较大,近于垂直,裂隙清晰,且为钙质泥质物所充填,节理间距密者0.5m即有一条,疏者35m即有一条,所以沿岸常见有岩块崩落的现象。上述节理主要在砂岩、泥灰岩与玄武岩之类的岩石内产生。2.2.4 水文地质条件本区地形高差大,表流占去大半,缺乏强烈透水层,故地下水不甚丰富,对工程比较有利。根据压水试验资料,玄武岩中透水性不同,裂隙少且坚硬完整的玄武岩为不透水层,其压水试验的单位吸水量小于0.01l/(min·m)。夹于玄武岩中的凝灰岩,以及

22、裂隙甚少的火山角砾岩都为良好的不透水性岩层,正因为这些隔水的与透水的玄武岩存在逐使玄武岩区产生许多互不连贯的地下水,一般砂岩也是细粒至微粒结构,除因构造节理裂隙较发育,上部裂隙水较多外,深处岩层因隔水层的层次多,难于形成泉水,石灰岩地区外围岩石多为不透水层,渗透问题也不存在。2.2.5 地震烈度本地区地震烈度定为7度,基岩与钢筋混凝土之间磨擦系数取0.65。2.3 建筑材料2.3.1 料场的位置和储量各料场的位置与储量见坝区地形图。由于河谷内地形平坦,采运尚方便。沙砾料料场位于坝址上下游各有四处,总量达1850万m3。粘性土料料场于上游有三处,下游两处,总量190万m3。料场距坝址2km左右。

23、各砂砾石料场渗透系数K值为2.0×102cm/s。最大孔隙率0.44,最小孔隙率0.27。石料坚硬玄武岩可作为堆石坝石料,储量较丰富,总储量450万m3,在坝址附近有石料场一处,覆盖层浅,开采条件较好。2.3.2 各建筑材料的物理力学性质粘土的物理力学性质见表2.3.1,砂石料的颗粒级配及物理力学性质见表2.3.22.3.3,各料场的天然休止角见表2.3.4。表2.3.1 粘土的物理力学性质料场名称物理性质渗透系数(10-6cm/s)力学性质化学性自然含水量(%)自然容重比重孔隙率(%)孔隙比稠度饱和度颗粒级配,(成分%,粒径d)击实剪力固结压缩系数(Cm2/kg)有机含量灼烧法(%

24、)可溶盐含量(%)流限()塑限(%)塑性指数砾砂粘土最大干密度(g/cm3)最优含水量(%)内摩擦角(º)凝聚力Kpa湿干粗中细粉(kN/m3)>2mm20.5mm0.50.05mm0.050.005mm<0.005mm1#下24.818.9115.162.6742.260.73442.6023.1419.460.937.475.9517.8735.4833.231.6022.074.31724.6724.00.0211.730.0702#下24.218.9115.182.6741.900.72143.9022.2021.700.917.254.1514.3541.753

25、2.251.6521.024.80025.5023.00.0201.900.0191#上25.617.3513.032.6549.800.99049.5725.0024.570.878.838.0017.5031.0034.671.5622.301.90023.1725.00.0262.200.1102#上26.316.3712.842.7452.301.09349.9026.3023.500.694.504.3320.6736.2034.301.5423.803.96021.5038.00.0330.250.1103#上15.919.1116.642.7037.000.58034.0020.

26、0014.000.676.409.0012.0035.0019.601.8016.903.00028.0017.00.0101.900.080表2.3.2 沙砾石的颗粒级配300100100606020202.52.51.21.20.60.60.30.30.150.151上5.218.621.412.318.613.95.44.60.32上4.817.820.314.117.814.84.65.30.53上3.815.418.515.316.420.53.56.20.44上6.018.319.416.415.616.74.82.50.31下4.514.120.123.214.97.28.67.

27、20.22下3.919.222.418.719.18.35.72.80.13下5.023.119.114.218.48.96.34.10.94下4.122.418.714.117.914.44.13.60.7表2.3.3 砂石料的物理性质名称1上2上3上4上1下2下3下4下容重1.861.791.911.901.861.851.841.80比重2.752.742.762.752.752.732.732.72孔隙率32.534.731.031.532.532.232.533.8软弱颗粒2.0%1.5%0.9%1.2%2.5%0.8%1.0%1.2%有机物含量淡色淡色淡色淡色淡色淡色淡色淡色表2.

28、3.4 各料场的天然休止角 料场名称最小值最大值平均值1上34°3035°5035°102上35°0037°1036°003上34°4036°4035°404上35°1037°4036°301下34°1036°3035°202下35°2038°0036°403下34°3037°1035°504下36°0038°2037°102.4 经济资料2.4.1 库区经

29、济流域内部为农业人口,多种植水稻、玉米等。库区内尚未发现有价值可开采的矿产。淹没情况见表2.4.1。表2.4.1 各高程淹没情况高程(m)280728122817282228272832淹没人口(人)3500364038904060532071402.4.2 交通运输坝址下游120km处有铁路干线通过,已建成公路离坝址仅20km,因此交通尚称方便。3 工程等别及建筑物级别根据SDJ12-1978水利水电枢纽工程等级划分设计标准(山区,丘陵区部分)之规定,水利水电枢纽工程根据其工程规模效益及在国民经济中的重要性划分为五类,综合考虑水库的总库容、防洪库容、灌溉面积、电站的装机容量等,工程规模由库容

30、决定,由于该工程正常蓄水位为2821.4m,库容约为3.85亿m3,估计校核情况下的库容不会超过10亿m3,故根据标准(SDJ12-1978),该工程等别为二等,工程规模属于大(2)型,主要建筑物为2级,次要建筑物为3级,临时性建筑物级别为4级。4 洪水调节计算4.1 防洪标准该工程主要建筑物级别为2级,根据防洪标准(GB50201-94)规定2级建筑物土坝堆石坝的防洪标准采用100年一遇设计,2000年一遇校核,水电站厂房防洪标准采用50年一遇设计,500年一遇校核。临时性建筑物防洪标准采用20年一遇标准。4.2 设计洪水4.2.1 设计洪峰流量本河流属典型山区河流,洪水暴涨暴落,根据资料统

31、计分析得100年一遇设计洪峰流量为=1680m3/s,2000年一遇校核洪峰流量为=2320m3/s。4.2.2 设计洪水过程线根据资料现有设计洪峰流量和坝址处水文站的单位洪水流量过程线,故本次设计洪水过程线采用以洪峰控制的同倍比放大法对典型洪水进行放大,分别得设计洪水与校核洪水过程线。设计洪水过程线成果见表4.2.1。表4.2.1 E江水利枢纽工程坝址处设计洪水过程线时段(t=3)典型洪水设计洪水校核洪水时段(t=3)典型洪水设计洪水校核洪水100.0 0.0 1715.0 211.8 292.4 25.0 70.6 97.5 1813.0 183.5 253.4 315.0 211.8 2

32、92.4 1911.5 162.4 224.2 430.0 423.5 584.9 2010.0 141.2 195.0 580.0 1129.4 1559.7 2110.0 141.2 195.0 6119.0 1680.0 2320.0 229.5 134.1 185.2 790.0 1270.6 1754.6 238.0 112.9 156.0 860.0 847.1 1169.7 245.0 70.6 97.5 950.0 705.9 974.8 254.0 56.5 78.0 1040.0 564.7 779.8 263.0 42.4 58.5 1135.0 494.1 682.4

33、272.0 28.2 39.0 1230.0 423.5 584.9 281.0 14.1 19.5 1325.0 352.9 487.4 290.0 0.0 0.0 1422.5 317.6 438.7 max(m3/s)119.0 1680.0 2320.0 1520.0 282.4 389.9 洪量(万m3)786 11092 15318 1617.5 247.1 341.2 倍比KQ14.1 19.5 4.3 调洪演算4.3.1 库容曲线该水库库容曲线根据提供的曲线图量算得高程容积面积表见表4.3.1。表4.3.1 E江水库高程容积面积表高程H(m)库容V(万m3)面积A(km2)高程

34、H(m)库容V(万m3)面积A(km2)277010001.25 28203670017.15 277514001.65 2821.43850017.70 278028002.50 28234200019.00 278547003.40 28254620020.50 279067004.50 28275090021.80 279595005.75 28295760024.00 2800129007.60 28336490026.00 2805170009.20 28357000026.40 28102220011.50 28377500028.50 28152860014.20 2840816

35、0030.35 4.3.2 泄洪方式本枢纽拦河大坝初定为土石坝,故需另设坝外泄洪建筑物。根据地质资料显示坝址两岸山坡陡峻,故开挖开敞溢洪道的将可能造成开挖量太大而不经济,因而可采用隧洞泄洪,并可以考虑与施工导流结合。泄洪隧洞采用无压流,由于受地形条件影响,又需要满足无压要求,故避免闸门做大而不经济和方便运行管理,进口采用wes型实用堰。4.3.3 防洪限制水位及水库运用方式根据资料分析计算该水库正常蓄水位为2821.4,该水库防洪限制水位取与正常水位重合。水库运用方式:洪水来临之前用闸门控制关水,当洪水来临时,并且库水位涨到防洪限制水位时,开闸泄洪,起始由于来量较小,可以控制下泄流量等于来流量

36、,水库保持汛前限制水位不变,当来水流量继续加大,无法保持汛限水位不变时,则闸门全开,下泄流量随水位的升高而加大,流态为自由泄流。4.3.4 泄洪能力本次根据确定的泄洪方式,进行泄流能力分析,根据无压隧洞自由计算其过流能力,泄流公式按下式计算。m自由出流系数,取0.485;b溢流孔宽;H0H0=H+v2/2g,H堰上水头,考虑上游堰前水域开阔,取H0=H。E江水库泄洪设施不同方案的泄流能力曲线见表4.3.2。表4.3.2 E江水库泄洪设施不同方案的泄流能力曲线表堰顶水头H(m)b=6m泄流量(m3/s)堰顶水头H(m)b=7m泄流量(m3/s)堰顶水头H(m)b=8m泄流量(m3/s)1.0 1

37、2.91.0 15.01.0 17.23.0 67.03.0 78.13.0 89.35.0 144.15.0 168.15.0 192.17.0 238.77.0 278.57.0 318.39.0 348.09.0 406.09.0 464.011.4 496.111.4 578.811.4 661.513.0 604.213.0 704.913.0 805.615.0 748.815.0 873.615.0 998.417.0 903.517.0 1054.117.0 1204.620.0 1152.920.0 1345.020.0 1537.24.3.5 调洪演算根据地形和地质资料泄洪

38、洞布置时进口地高程为可取2800m,而水库汛限水位取等于正常蓄水位为2821.4m,因此需要确定泄洪洞进口堰顶高程,以满足泄洪洞产生无压过流以、工程经济性和下游防洪限制泄量的要求,本设计拟订五组方案进行比较,调洪演算成果见表4.3.1。表4.3.1 调洪演算成果表方案堰顶高程z(m)洞宽B(m)工况下泄流量Q(m3/s)库容V(万m3)库水位Z(m)一2810m7m设计672.6411232822.60 校核753.7432162823.58 二2805m7m设计1040.4394752821.85 校核1114.2412002822.63 三2810m6m设计1089.2415662822.

39、80 校核1650.7438912823.90 四2805m6m设计905.5398482822.02 校核978.4418392822.93 五2810m8m设计752.2407042822.41 校核837.4426932823.33 4.3.6 方案选择根据以上方案只有一、五能满足泄流量Q<900m3/s,因而需对一、五方案的技术经济进行比较,同时也应结合导流问题。一、五两方案堰顶高程均为2810m,第五方案库水位较低,与第一方案相比相差甚小,洞宽相对较大,故选择第一方案较为合适,即堰顶高程为Z=2810m,溢流孔口净宽B=8m,设计水位2822.41m,校核水位2823.33m,

40、设计泄洪流量752.2m3/s,校核泄洪流量837.4m3/s。5 坝型选择与枢纽布置5.1 坝址及坝型选择5.1.1 坝址选择根据地质资料,经过比较选择地形图所示河弯地段作为坝址,并选择II、IIII两条较有利的坝轴线,两轴线河宽基本相近,因而大坝工程量基本相近,由地质剖面图上可以看出:II剖面,河床覆盖层厚平均20m,河床中部最大达32m,坝肩除10m左右范围的风化岩外,还有数十条的破碎带,其余为坚硬的玄武岩,地质构造总体良好(对土石坝而言),IIII剖面除与II剖面具有大致相同厚度的覆盖层及风化岩外,底部玄武岩破碎带纵横交错,若将坝建于此,则绕坝渗流可能较大,进行地基处理工程量会加大,综

41、合考虑以上因素,坝轴线选择II处。图5.1 沿坝轴线方向的大坝断面地质剖面图5.1.2 坝型选择所选的坝轴线处河床冲积层较深,两岸风化岩石透水性大,基岩的强度较底,且不完整。从地质条件看不宜建拱坝及支墩坝。较高的混凝土重力坝也要求修建在岩石基础上,并且需要消耗大量水泥。土石坝适应地基变形能力较强,对地基的要求较低,并能就地取材。通过各种不同的坝型进行定性的分析比较,综合考虑地形条件、地质条件、建筑材料、施工条件、综合效益等因素,最终选择土石坝的方案。5.2 枢纽布置根据工程功能以及满足正常运行管理要求,该枢纽由土石坝、泄洪隧洞、冲沙放空洞、水电站(包括:引水隧洞、调压井、压力管道、电站厂房、开

42、关站)等建筑物组成。5.2.1 挡水建筑物土坝挡水建筑物按直线布置,土坝布置在河弯地段上。5.2.2 泄水建筑物泄洪隧洞泄洪采用隧洞方案,为缩短长度、减小工程量,泄洪隧洞布置在凸岸(右岸),这样对流态也较为有利,考虑到引水发电隧洞也布置在凸岸,泄洪隧洞布置以远离坝脚和厂房为宜,为减少泄洪时影响发电,进出口相距80100m以上,冲沙放空洞位于泄洪隧洞与水电站引水隧洞之间。5.2.3 水电站建筑物引水隧洞、电站厂房布置于凸岸,在泄洪隧洞与大坝之间,由于风化岩层较深,厂房布置在开挖后的坚硬玄武岩上,开关站布置在厂房旁边。本次根据工程经济性、正常运行安全稳定性以及地形地质条件等各方面因素要求,并且将冲

43、沙放空洞和泄洪隧洞与施工导流隧洞相结合对枢纽建筑物进行了布置。枢纽平面布置见图5.2。图5.2 枢纽建筑物平面布置图6 大坝设计6.1 土石坝坝型的选型影响土石坝坝型选择的因素很多,其主要影响因素有附近的筑坝材料、地形地质条件、气候条件、施工条件、坝基处理、抗震要求等。本次选择几种比较优越的坝型,拟订剖面轮廓尺寸,然后对工程量、工期、造价进行比较,最后选定技术经济可靠合理的坝型。本设计限于资料只作定性的分析来确定土石坝坝型。土石坝按其施工方法可分为碾压式土石坝、抛填式堆石坝、定向爆破堆石坝、水中倒土坝和水力冲填坝。从地形地质条件以及附近建筑材料来看本次设计坝型应选择碾压式土石坝。碾压式土石坝根

44、据土料配置的位置和防渗体所用材料种类的不同,又分为均质坝和土质防渗体分区坝、非土质材料防渗体分区坝。均质坝材料单一,工序简单,但坝坡较缓,剖面大,工程量大,施工易受气候影响,冬季施工较为不便,坝体空隙水压力大。从本工程来看,经探明坝址附近可筑坝的土料只有190万m3,远远不能满足均质坝填筑土料数量上的要求,因此从材料上考虑均质坝方案是不宜采用的。土质防渗体分区坝主要有心墙坝、斜心墙坝、斜墙坝和多种土质坝等类型。心墙坝土质防渗体设在坝体中部,两侧为透水性较好的砂石料,该坝型粘性土料所占比重不大,施工受季节影响较小,但施工时心墙与坝体同时填筑,相互干扰较大。斜心墙坝和心墙坝基本类似,并且可以改善坝

45、体应力状态,能显著减弱坝壳对心墙的“拱效应”,其抗裂性能优于心墙坝和斜墙坝。斜墙坝土质防渗体设在上游或接近上游面,该坝型斜墙与坝体施工干扰小,但其抗震性和适应不均匀沉降的性能不如心墙坝。由于该工程所在地区为地震烈度定为7度,基岩与砼之间磨擦系数取0.65,故不宜采用斜墙坝。多种土质坝施工工序复杂,相互干扰较大,施工易受气候影响,在此不予采用。非土质材料防渗体坝的防渗体一般有混凝土、沥青混凝土或土工膜等材料组成,而其余部分由土石料组成,因工程附近建筑材料来源丰富,为就地取材不宜采取该坝型。由上述比较可以看出,斜心墙坝综合了心墙坝与斜墙坝的优缺点,斜心墙有足够的斜度,能减弱坝壳对心墙的拱效应作用;

46、斜心墙坝对下游支承棱体的沉陷不如斜墙那样敏感,斜心墙坝的应力状态较好,因而最终采用斜心墙坝的方案。6.2 大坝轮廓尺寸的拟定大坝剖面轮廓尺寸包括坝顶高程,坝顶宽度、上下游坝坡、防渗体等排水设备。6.2.1 坝顶高程计算根据碾压式土石坝设计规范(SL2742001)(以下简称“规范”)规定,坝顶高程(取其最大值)分别按照正常蓄水位加正常运用条件下的坝顶超高、设计水位加正常运用条件下的坝顶超高、校核水位加非常运用下的坝顶超高进行计算,因该地区地震烈度为7º,故还需考虑正常蓄水位加非常运用时的坝顶超高再加上地震涌浪高度,最后取以上四种工况最大值,同时并保留一定的沉降值。坝顶高程在水库正常运

47、用和非常运用期间的静水位以上应该有足够的超高,以保证水库不漫顶,其超高值y按下式计算:式中:R最大波浪在坝坡上的爬高,m;e最大风壅水面高度,m;A安全加高,m,根据坝的等级,设计运用条件时取1.0m,非常运用条件是取0.5m;根据“规范”,计算大坝波浪爬高时,所采用设计风速:正常运用条件下为多年平均最大风速的1.6倍,非常运用条件下,采用多年平均最大风速,根据气象资料统计,E江水库多年平均最大风速为15.0m/s,最大吹程为12km。平均波高及平均波长按下式计算:式中:hm平均波高,m;Tm平均周期,s;W计算风速,m/s;D风区长度,m;Hm水域平均水深,m;g重力加速度,取9.81m/s

48、2;Lm平均波长,m。平均波浪爬高Rm参照“规范”附录A.1.12计算,初步拟定水库大坝上游坝坡为m=2.5,故波浪平均爬高按“规范”附录A.1.12式计算:式中:斜坡的糙率渗透性系数,护面类型为砌石护面确定=0.75;经验系数,由风速W、坡前水深H、重力加速度g所组成的无维量,查表A.1.12-2得设计条件:=1.00;校核条件:=1.00;m斜坡的坡度系数。最大波浪在坝坡上的爬高设计值R按2级土石坝取累积概率P=1%爬高值R1%计算。根据计算该水库在设计条件下和校核条件下的累积概率P=1%的经验系数Kp值为2.23。风浪壅高按下式计算:式中:K综合摩阻系数,计算时一般采用K=3.6

49、5;10-6;风向与水域中线的夹角;其他符号同前。根据以上公式及参数,坝顶超高计算成果见表3.1.1。表3.1.1 坝顶超高计算成果表工 况水位(m)设计风速(m/s)平均波长(m)平均波高(m)平均波浪爬高(m)风浪壅高(m)设计爬高(m)安全加高(m)坝顶超高(m)设计(P=1%)2822.4124.07.570.250.380.032 0.851.01.88校核(P=0.05%)2823.3315.011.810.380.590.012 1.320.51.84由于水库所在地区地震基本烈度7°,按水工建筑物抗震设计规范(SL29397),水工建筑物抗震计算的上游水位可采用正常最高蓄水位,地震区的地震涌浪高度,可根据设计烈度和坝前水深,一般涌浪高度为0.5m1.5m,该水库地震涌浪高度取用1.0m,不考虑地震作用的附加沉陷计算。根据碾压式土石坝设计规范(SL274-2001)第5.3.3条规定,坝顶高程分别按以下运用情况计算,取其最大值:1、设计洪水位加正常运用情况的坝顶超高:2822.41+1.882824.29m;2、正常蓄水位加正常运用情况的坝顶超高:2821.4+1.88=2823.28m;3、校核洪水位加非常运用情况的坝顶超高:2823.33+1.84=2825.17m;4、正常蓄水位加非常运用条件的坝顶超高,再加地震安全加高:2821.4+1.84+

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论