火力发电厂主接线设计毕业论文_第1页
火力发电厂主接线设计毕业论文_第2页
火力发电厂主接线设计毕业论文_第3页
火力发电厂主接线设计毕业论文_第4页
火力发电厂主接线设计毕业论文_第5页
已阅读5页,还剩40页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、摘 要电力系统以发电、变电、输电、配电和用电等环节组成的电能生产与消费的一个完整的系统。它主要是将自然界的一次能源通过发电动力装置转化成电能,再经输、变电系统及配电系统将电能供应到各负荷中心。电气主接线也称为电气主系统一次接线,它是发电厂、变电所电气设计的主体,也是电力系统网络的重要组成部分。电气主接线反映了发电机、变压器、线路、断路器和隔离开关等有关电气设备的数量、各回路中电气设备的连接关系及发电机、变压器与输电线路、负荷间以怎样的方式连接,直接关系到电力系统的可靠性、灵活性和安全性,直接影响发电厂、变电所电气设备的选择,配电装置的布置,保护与控制方式选择和检修的安全与方便性。而且电能的使用

2、已经渗透到社会、经济、生活的各个领域,而在我国电源结构中火电设备容量占总装机容量的75%。本文是对配有6台300MW汽轮发电机的大型火电厂电气一次部分的初步设计,主要完成了整个电气一次部分主接线的设计。包括电气主接线的形式的比较、选择;主变压器、高压厂用变压器台数、容量和型号的选择;短路电流计算和高压电气设的选择与校验; 以及相关的配电装置设计及选择。关键词: 发电厂,主接线,变压器,短路计算,电气设备,配电装置Abstract From power generation, substation, transmission, distribution and consumption of en

3、ergy and other aspects of the composition of production and consumption systems. the function is to the natural world through the power of the primary energy into electrical energy power plant, then lose, substation and distribution system will supply electricity to the load center. Electrical wirin

4、g is the main power plants, electrical substations of the most important part of the design, but also constitute an important part of the power system. Connection to determine the overall power system and power plants, substations running their reliability, flexibility and economy are closely relate

5、d. And choice of electrical equipment, power distribution device configuration, relay protection and control of the formulation has a greater impact. The use of energy has infiltrated the social, economic, all areas of life, and in the power structure of China's thermal power equipment capacity

6、of the total installed capacity of 75%. This article is equipped with 6 sets of 300MW turbo-generator of large-scale thermal power plants a part of the preliminary design, mainly to complete the electrical design of the main terminal. Including the electrical wiring of the main forms of comparison,

7、the choice; main transformer, start / back-up transformers and high voltage transformer factory capacity calculation, the number and types of options; short-circuit current calculation and high-voltage electrical equipment selection and validation; and made a transformer protection . Keywords: power

8、 plant,transformer, main connection,relay,electrical equipment,distribution equipment目 录摘 要IAbstractII1 绪 论11.1 电力系统概述11.2 电力系统的国内外发展概况11.3 火力发电厂电气部分概述21.4 课题的主要研究工作31.4.1 主接线的方案:31.4.2 确定主变形式:31.4.3 计算短路电流:31.4.4 合理地选择主要的电气设备:31.4.5 配置主要的电气设备:3 发电厂电气部分总体分析52.1 主接线原理分析52.1.1 电气主接线的设计原则52.1.2 电气主接线的主

9、要要求52.2 原始资料提供52.2.1 原始资料52.2.2 始资料的容量负荷分析设计62.3 主接线方案的设计6方案分析62.3.2 方案设计62.4 方案论证比较92.4.1 方案一92.4.2 方案二92.5 方案的经济比较及选定103 主变压器选择113.1 主变压器台数选择113.2 主变压器容量选择113.3 主变压器型号选择114 厂用接线的设计124.1 厂用电源的选择124.1.1 厂用电电压等级的确定124.1.2 厂用电系统接地方式124.1.3 厂用工作电源引接方式124.2 厂用主变选择124.2.1 厂用电主变选择原则124.2.2 确定厂用电主变容量125 短路

10、电流计算145.1 短路电流计算的目的145.2 短路电流计算条件145.2.1 基本假定145.2.2 一般规定145.3 短路电流计算步骤155.4 短路电流分析计算155.4.1 选取短路点155.4.2 画等值网络图175.4.3 将各元件电抗换算为同一基准的标么电抗175.4.4 短路计算206 电气设备的选择316.1高压断路器的选择316.2 隔离开关的选择336.3 互感器的选择356.3.1 电压互感器选择356.3.2 电流互感器选择356.4 熔断器的选择376.5 避雷器的选择386.5.1 选择原则386.5.2 阀式避雷器按下列条件选择386.5.3 500KV侧避

11、雷器的选择和校验396.6 导体的设计和选择406.6.1 分相封闭母线与发电机出口电缆选择型别406.6.2 主回路封闭母线选择417 配电装置电气总平面布置设计437.1 屋外配电装置437.1.1 500KV装置的布置方式437.2 500KV一台半断路器接线为三列式布置447.2.1 所选择的装置类型44致 谢46参考文献47附录A 各用电设备的选择481.火力发电机:482.主变压器:483.高压断路器:484.隔离开关:485.电压互感器:486.电流互感器:497.避雷器:498.熔断器:499.导体:491 绪 论1.1 课题背景电能是一种清洁的二次能源。由于电能不仅便于输送和

12、分配,易于转换为其它的能源,而且便于控制、管理和调度,易于实现自动化。因此,电能已广泛应用于国民经济、社会生产和人民生活的各个方面。绝大多数电能都由电力系统中发电厂提供,电力工业已成为我国实现现代化的基础,得到迅猛发展。目前对于大多数发展中国家来说,火力发电仍是今后很长一段时期内的必行之路。火力发电是现在电力发展的主力军,在提出和谐社会、循环经济的环境中,我们在提高火电技术的方向上要着重考虑电力对环境的影响,对不可再生能源的影响,虽然现在在我国已有部分核电机组,但火电仍占领电力的大部分市场,近年电力发展滞后经济发展,全国上了许多火电厂,但火电技术必须不断提高发展,才能适应和谐社会的要求。“十五

13、”期间我国火电建设项目发展迅猛。2001年至2005年8月,经国家环保总局审批的火电项目达472个,装机容量达344 382MW,其中2004年审批项目135个,装机容量107 590MW,比上年增长207%;2005年1至8月份,审批项目213个,装机容量168 546MW,同比增长420%。如果这些火电项目全部投产,届时我国火电装机容量将达5.82亿千瓦,比2000年增长145%。2006年12月,全国火电发电量继续保持快速增长,但增速有所回落。当月全国共完成火电发电量2 266亿千瓦时,同比增长15.5%,增速同比回落1个百分点,环比回落3.3个百分点;随着冬季取暖用电的增长,火电发电量

14、环比增长较快,12月份与上月相比火电发电量增加223亿千瓦时,环比增长10.9%。2006年全年,全国累计完成火电发电量23 186亿千瓦时,同比增长15.8%,增速高于2005年同期3.3个百分点。随着中国电力供应的逐步宽松以及国家对节能降耗的重视,中国开始加大力度调整火力发电行业的结构。本设计的主要内容包括:通过原始资料分析和方案比较,确定发电厂的电气主接线。计算短路电流,并根据计算结果来选择和效验主要电气设备。1.2 电力系统的国内外发展概况新中国成立以后,特别是改革开放以来,我国电力工业得到了迅速发展。在党中央、国务院的正确领导下,广大电力职工奋发图强,辛勤耕耘,中国的电力工业取得了令

15、人瞩目的成就。1987年,全国电力装机容量迈上1亿千瓦台阶;1995年突破2亿千瓦;到2000年底,全国电力装机容量已达3.19亿千瓦。从1949年到改革开放前的1978年,我国电力装机由185万千瓦增加到5 712万千瓦,增长了29.9倍;年发电量由43亿千瓦时增加到2566亿千瓦时,增长了58.7倍。而从1978年到二十世纪末,我国电力装机和年发电量又分别增长了4.58和4.33倍。目前,我国的电力装机容量和年发电量均居世界第2位;我国的电力工业也已从大电网、大机组、超高压、高自动化阶段,进入了优化资源配置、实施全国联网的新阶段。我国是发展中国家,我国的电力工业长期以来依靠多家办电的政策,

16、吸引了大批投资,促进了我国电力工业的发展;并通过引进、消化、吸收和技术创新,极大地提高了电力的技术水平和装备水平;通过十年的坚持不懈的达标、创一流工作,大大提高了电力企业的管理水平,很多电力企业,尤其是一些发电厂的管理水平可以与发达国家的电厂的管理一比高低。但是,我国人均用电水平还很低,面临着继续快速发展的巨大压力。自从加入了WTO以后,国家电力公司已经确定了“建成控股型、经营型、集团化、现代化、国际一流的电力公司”的战略目标,并已在2000年跻身世界500强,2001年在世界500强中位居77位。中国加入WTO对电力工业来说,是机遇与挑战并存,机遇大于挑战。1.3 火力发电厂电气部分概述在我

17、国乃至全世界范围,火电厂的装机容量占总装机容量的70左右,发电量占总发电量的80左右。截止目前为止,我国火力发电厂单机容量以30万千瓦和60万千瓦机组为主,浙江省温州市玉环县的华能玉环电厂正在投建4台100万千瓦发电机组,首台机组预计今年投产发电。其100万千瓦超超临界火力发电机组主蒸汽压力为25兆帕,主蒸汽和再热蒸汽温度均为600度,这不仅在我国是最高参数,在世界上也处于最前沿水平。此前,上海电气与西门子合作制造的上海外高桥2台90万千瓦火力机组是我国第一个超临界百万级项目,首台机组已于2006年开始发电。火力发电一直是我国乃至世界比较常用的一种发电形式,从瓦特发明蒸汽机到现在火力发电厂各个

18、部分在不断地更新换代,直到今天火力发电还延续着一种古老的气息,视乎在变,但变得缓慢,其中电气部分也在不断地更新,比如:变压器的改变、主接线形式的多样化、开关形式的多样化、设备使用的多样化、保护措施的多样化。火力发电厂的设计有很多方面:电气部分、动力部分、规划部分、热力部分、化学部分等等。在这作为电气工程专业的学生主要还是一发电厂电气部分为主进行讨论分析,而在进行分析过程中有要对其进行细微地分支性地总结讨论,即需要对电力系统的总体进行分析,从而需要对发电、变电、输电、配电和用电进行总体的分析讨论。 然而,我们所研究的是发电厂电气部分,是电力系统中的一块重要部分,也可以说是整个电力系统的核心。所以

19、,我们在规划设计电力系统时首先应该把发电厂考虑进去,怎样能使整个发电厂高效、节能、经济、环保、安全、长期地运行。 也就是说,作为学习电气工程自动化专业的我们要全面考虑发电厂的电气部分,牢牢掌握所学的每个部分,从真正意义上对发电厂用电的改革,使之全面协调运行。1)对主接线来说,要尽量简单可行,能做到省材料、省费用、发电运转长期良好、效率高、可靠性高、实用性强等。2)在设计主接线的同时还要进行对主变压器的选择运用。在选择主变压器的时候应该严格按照理论与实践过程中的要求进行;即要根据发电容量、所需变电电压等级等等来对主变压器进行选择。3)短路电流的计算以及设备的选择。短路电流计算一般情况下进行三相短

20、路电流计算即可,有些还需要对二相、单相进行计算;在计算过程中要认真地选取可能会发生短路的短路点,然后再计算出短路电流,根据短路电流可以选出适当的用电设备和进行保护设置,达到双重效果。4)配电装置及电气总平面布置设计。配电装置的整个结构尺寸,是综合考虑设备的外形尺寸、运行维护、巡视、操作、检修、运输的安全距离及运行中可能发生的过电压等因素而决定的。5)发电机与变压器保护整定设计。作为整个电力系统的“心脏”来说,其发电机又可称为发电厂的心脏,所以要设计整定保护,以便长期使用;而对于变压器也应当给以保护,这样才能使之长远输电得到保证。1.4 课题的主要研究工作 设计主接线的方案:分析原始资料、确定主

21、接线。进行经济比较并确定最佳方案、合理的选择各侧的接线方式、确定厂用电接线方式。 确定主变形式:包括主变台数、主变容量选定、主变型号的选定。短路电流计算:合理选择计算短路点、计算各点的短路电流、并列出计算结果表。 合理地选择主要的电气设备:选择500KV电气的主接线、主变双侧的断路器和隔离开关、避雷针、避雷器、避雷线和各个电压等级主母线上的电压电流互感器以及主母线。选择主要的电气设备的配电装置:配置各级电压互感器、避雷器和各个支路的电压电流互感器以及屋内屋外配电装置。 发电厂电气部分总体分析2.1 主接线原理分析发电厂和变电所的电气主接线是由电气一次设备按电力生产的顺序和功能要求连接而成的接受

22、和分配电能的电路,是保证电网安全可靠经济运行的关键,是电气设备布置选择自动化水平和二次回路设计的原则和基础。2.1.1 电气主接线的设计原则应根据发电厂和变电所在电力系统的地位和作用,首先应满足电力系统的可靠运行和经济调度的要求。根据规划容量、本期建设规模、输送电压等级、进出线回路数、供电负荷的重要性、保证供需平衡、电力系统的线路容量、电气设备性能和周围环境及自动化规划与要求等条件确定。应满足可靠性、灵活性和经济性的要求。2.1.2 电气主接线的主要要求1)可靠性:在研究主接线可靠性时应重视国内外长期运行的实践经验和其可靠性的定性分析;主接线的可靠性要包括一次部分和相应组成的二次部分在运行中可

23、靠性的综合,在很大程度上也取决于设备的可靠程度。可靠性的具体要求在于断路器检修时,不宜影响对系统的供电;断路器或母线故障以及母线检修时,尽量减少停运的回路数和停运时间,并要保证对一级负荷及全部或大部分二级负荷的供电。2)灵活性:主接线应满足在调度、检修及扩建时的灵活性。在调度时,应可以灵活地投入和切除发电机、变压器和线路,调配电源和负荷,满足系统在事故运行方式、检修运行方式以及特殊运行方式的系统调度要求;在检修时,可以方便地停运断路器、母线及其继电保护设备,进行安全检修而不致影响电力网的运行和对用户的供电;扩建时,可以容易地从初期接线过渡到最终接线。3)经济性:要节省投资,主接线应力求简单,以

24、节省断路器、隔离开关、电流和电压互感器、避雷器等一次设备;要节省继电保护和二次回路不过于复杂,以节省二次设备和控制电缆;要能限制短路电流,以便于选择价廉的电气设备或轻型电器;主接线设计要为配电装置布置创造条件,尽量使占地面积减少;经济合理地选择主变压器的种类、容量、数量、要避免因两次变压而增加电能损失。2.2 原始资料分析2.2.1 原始资料装机6台,凝气式机组6*300MW( =20KV),厂用电率8%,机组年利用小时数 =6500h。系统规划部门提供的电力负荷及与电力系统连接情况资料: 500KV电压级与容量为3500MW的电力系统连接,系统归算到本电厂500KV母线上的标幺电抗 =0.0

25、36,基准容量 =100MW,500KV架空线2回路。此外,尚有相应的地理资料、气候条件和其它资料。2.2.2 始资料的容量负荷分析设计电厂为大型火电厂,其容量为6*300=1800(MW),占电力系统容量1800/(3500+1800)*100%=33.96%,超过了电力系统的检修备用容量8%15%和事故备用容量10%的限额,说明该厂在未来电力系统中的作用和地位至关重要,而 且年利用小时数为6 500h>5 000h,远远大于电力系统发电机组的平均最大负荷利用小时数(如2005年我国电力系统发电机组年最大负荷利用小时数为5225h)。该厂为火电厂,在电力系统中将主要承担基荷,从而该厂主

26、接线设计务必着重考虑其可靠性。从负荷特点及电压等级可知,20KV电压为300MW发电机出口电压,既无直配负荷,又无特殊的要求,拟采用单元接线的形式,可以节省价格昂贵的发电机出口断路器,又利于配电装置的布置;为了保证检修出线断路器不致对该回路停电,拟采用一台半和双母分段带旁路线接线形式为宜;500KV与系统有2回馈线,呈强联系形式并送出本厂最大可能的电力为1 800-1 800*8%=1 656(MW)。可见,该厂500KV级的接线对可靠性要求应当很高。2.3 主接线方案的设计2.3.1方案分析根据对原始资料的分析,现将各电压级可能采用的较佳方案列出,进而以优化组合方式,组成最佳的方案。根据对原

27、始资料的分析,现有双母线接线形式、双母线带旁母接线形式、双母分段带旁母接线形式、一台半断路器接线形式。500KV电压级。500KV负荷容量大,其主接线是本厂向系统输送功率的主要接线方式,为保证可靠性,可能有多种接线方式,经过定性分析筛选后,可以选用的方案有一台半断路器接线,也可以是双母线分段带旁母的接线形式。 2.3.2 方案设计以上分析、筛选、组合,可以保留两种可能的接线方案,方案一如下:图2.1 6*300WM火力发电厂主接线方案一方案二如下:图2.2 6*300WM火力发电厂主接线方案二2.4 方案论证比较2.4.1 方案一此方案为500KV侧采用一台半断路器接线形式。一台半断路器,又称

28、3/2接线,即每两个回路用三台断路器接至两组母线,从主接线进行对方案一的优缺点比较论证,其优点有:1)任意一组母线故障或检修(所有接于该母线上的断路器断开),不影响机组和出线运行。2)一台半断路器交叉接线具有更高的运行可靠性,可减少特殊运行方式下事故的扩大。3)除了联络断路器内部故障是(同串中的两侧断路器将自动跳闸)与其相连的两回路时停电外,联络断路器外部故障或其他任何断路器故障停电回路数也不会超过两回。4)任一断路器检修时所有回路都不会停电,而且可同时检修多台断路器。5)运行调度灵活,操作、检修方便,隔离开关仅作为检修时隔离电器。其缺点:1)要求电源数与出线数最好一致;为提高可靠性,要求同名

29、回路接在不同串上;对特别重要的同名回路,要考虑“交叉换位”,即同名回路分别接入不同母线。而由于配电装置结构的特点,要求每对回路中的变压器和出线向不同的方向引线,这将增加配电装置的隔离,限制这种接线的运用。2)与方案二相比,这种接线所用断路器、电流互感器等设备多,投资较大。3)二次控制接线和继电保护都较复杂。4)正常情况时,联络断路器动作次数是其两侧断路器的2倍;一个回路故障时要跳两台断路器,断路器动作频繁,检修次数增多。2.4.2 方案二方案二采用双母线分段带旁母线接线形式,其优点:1)母线可以轮流检修而不致使供电中断。 2)双母线通常采用单母线分段运行。 3)当进出线母线隔离开关需要检修时,

30、只需该进线(或出线)和一组母线停电,而不影响其他回路的正常供电。4)母联断路器代替被检修的断路器,不至使该回路长时间中断供电。5)双母线进出线断路器与保护为一对一方式,故保护方式比较简单。6)调度灵活,各电源和负荷可以任意在一组母线上运行,并可根据潮流变化或其他要求改变运行方式。缺点有以下几个方面:1)在改变运行方式时,母线隔离开关作为操作电气设备操作,而倒闸操作比较复杂,因而易造成误操作。2)当工作母线故障时,在切换母线的过程中仍要短时停电。3)检修线路断路器时,在装接“跨条”期间仍需短时停电,这对重要用户来说是不容许的。 4)需用的隔离开关数目比单母线接线增加许多,使配电装置复杂,增加了设

31、备投资。5)加了旁路接线形式就更为复杂。2.5 方案的经济比较及选定采用最小费用法,对拟订的两方案进行经济比较,上述两方案中的相同部分不参与比较计算,只是对相异部分进行计算。计算内容包括一次投资、年运行费用。虽然方案二比方案一供电更可靠,但是从经济的角度看,方案二的投资比方案一要大很多,增加了旁路间隔和旁路母线,每回间隔增加一把隔离开关,大大的增加了投资,同时方案二方案一多占用了土地,当今我国的土地资源比较缺乏。从技术和经济的角度论证了两个方案,虽然方案一比方案二供电可靠,但是由于目前断路器采用的是六氟化硫断路器,它的检修周期长,不需要经常检修,所以采用旁路也就没有多大意义了,这样一来不仅仅节

32、省了投资,也节约了用地,所以比较论证后确定采用了方案一。3 主变压器选择3.1 主变压器台数选择 由于发电厂6*300MW的发电机组共6台发电机,考虑到可靠性与高效性又与实际相符合,在主接线设计中需要使用6台主变压器。所以选择的变压器台数:6台3.2 主变压器容量选择单元接线中的主变压器容量SN 应按发电机额定容量扣除本机组的厂用负荷后,预留10的裕度选择,为: =(1-)MVA 式(3.1)发电机容量,在扩大单元接线中为两台发电机容量之和发电厂额定功率因数厂用电率根据查阅相关资料国内产品300MW汽轮发电机公司主要有:东方电机股份有限公司,上海汽轮发电机有限公司、哈尔滨电机厂有限公司、北京汽

33、轮电机有限责任公司。在这里主要选择是按照各公司的生产技术,其中上海电机厂较为恰当,根据需求选择发电机型号是:QFSN3002.额定功率为:300MW,额定功率因数为:0.85。根据上述数据可得: =349.4MVA所以,所需容量为349.4MVA的主变压器。3.3 主变压器型号选择根据上述的容量计算要求和实际设计,应选择360MW的双绕组变压器,其高压侧为500KV,变压器型号为:SFP7360 000/500;接线组可为,空载损耗为180KW,短路损耗为:828KW;阻抗电压为16.7%;总重量:263吨。4 厂用接线的设计4.1 厂用电源的选择4.1.1 厂用电电压等级的确定厂用电供电电压

34、等级是根据发电机的容量和额定电压、厂用电动机的额定电压及厂用网络的可靠、经济运行等诸方面因素,经技术、经济比较后确定。因为发电机的额定容量为300MW,由文献可知;比较后确定厂用电电压等级采用6kV的等级。4.1.2 厂用电系统接地方式厂用变采用高压三角低压采用星型接地,当容量较小的电动机采用380V时,采用二次厂用变,将6kV变为380V,中性点直接接地;启备变采用中性点直接接地,高压侧为星型直接接地,低压侧为星型或三角型,可变换使用。4.1.3 厂用工作电源引接方式因为发电机与主变压器采用单元接线,高压厂用工作电源由该单元主变压器低压侧引接。4.2 厂用主变选择4.2.1 厂用电主变选择原

35、则1)变压器、副边额定电压应分别与引接点和厂用电系统的额定电压相适应。2)连接组别的选择,使同压级厂用工作、备用变压器输出电压的相位一致。3)阻抗电压及调压型式的选择,宜使在引接点电压及厂用电负荷正常波动范围内,厂用电各级母线的电压偏移不超过额定电压的±5。4.2.2 确定厂用电主变容量按厂用电率确定厂用电主变的容量,厂用电率确定为=8%, =28.235MVA;选型号为:SF10-31500/21,额定容量为:31500KVA;电压比为:2122.5%/6.3-6.3 图4.1 厂用电接线简单示意图5 短路电流计算5.1 短路电流计算的目的在发电厂电气设计中,短路电流计算是其中的一

36、个重要环节。其计算的目的的主要有以下几个方面:1)电气主接线的比选。2)中性点接地方式确定。3)电气设备的选择。4)计算软导线的短路摇摆。5)确定分裂导线间隔棒的间距。6)验算接地装置的接触电压和跨步电压。7)选择继电保护装置和进行整定计算。5.2 短路电流计算条件5.2.1 基本假定1)正常工作时,三项系统对称运行。2)所有电流的电功势相位角相同。3)电力系统中所有电源均在额定负荷下运行。4)短路发生在短路电流为最大值的瞬间。5)不考虑短路点的衰减时间常数和低压网络的短路电流外,元件的电阻略去不计。6)不考虑短路点的电流阻抗和变压器的励磁电流。7)元件的技术参数均取额定值,不考虑参数的误差和

37、调整范围。8)输电线路的电容略去不计。5.2.2 一般规定1)验算导体的电器动稳定、热稳定以及电器开断电流所用的短路电流,应按本工程设计规划容量计算,并考虑电力系统远景的发展计划。2)选择导体和电器用的短路电流,在电器连接的网络中,应考虑具有反馈作用的异步电动机的影响和电容补偿装置放电电流影响。3)选择导体和电器时,对不带电抗回路的计算短路点,应选择在正常接线方式时短路电流最大地点。4)导体和电器的动稳定、热稳定和以及电器的开断电流,一般按三相短路计算。5.3 短路电流计算步骤现在,电力系统设计部门对复杂电力系统及发电厂、变电所短路电流的计算几乎都在计算机上进行。作为单体的发电厂、供电企业,对

38、设计验算、设备改造等需要进行短路电流计算时,有时无需专购短路电流计算程序,进行手算会更方便,概念更清楚,这里只介绍短路电流计算的基本数据设备,短路电流计算阻抗图绘制和计算步骤,不涉及具体的计算程序和上机操作,其计算步骤如下:1)绘制相应的电力系统、发电厂主接线。2)确定与短路电流有关的运行方式。3)计算各元件的阻抗。4)绘制相应的短路电流计算阻抗图。5)根据需要取不同的短路点进行短路电流计算。6)列出短路电流计算结果表。5.4 短路电流分析计算5.4.1 选取短路点由原始资料分析得,根据短路点选择的要求和条件,确定的短路点分布情况如下:选择母线处短路点d1,发电机回路出口处短路点d2、d3、d

39、4、d5、d6、d7和厂用变低压侧短路点d8、d9、d10、d11、d12、d13,如图5.1所示:图5.1短路点选择示意图具体元件用等值电抗表示,如图5.2:图5.2等值电抗短路点示意图根据分析试图采用查曲线法,看查曲线法是否符合要求。5.4.2 画等值网络图1)去掉系统中的所有负荷分支、线路电容和各元件的电阻,发电机电抗用次暂太电抗Xd:表5.1发电机参数(a)型号额定容量额定电压额定电流功率因素XdQFQS-200-2200MW15.75kV8625A0.8514.44%QFS-300-2300MW20kV10189A0.8527.45%TS1264/300-48300MW20kV110

40、00A0.87530.56%TQN-100-2100MW10.5kV6475 A0.8518.3%表5.2变压器参数(b)型号额定电压(kW)空载损耗(kW)短路损耗(kW)阻抗电压(%)SF10-240000242/15.7513SF10-3150020/6.3-6.311.8SFP7-360000500/2020.17SFP7-120000242/10.5145.4.3 将各元件电抗换算为同一基准的标么电抗取基准容量=100MVA,基准电压 新建发电厂发电机、变压器、厂用变的标么值:发电机G-1、G-2、G-3、G-4、G-5、G-6:=0.0915 变压器T-1、T-2、T-3、T-4

41、、T-5、T-6:=0.0672 厂用主变一次侧: =(1-)=0.056 厂用主变二次侧:=0.393 式中:分裂系数,通常在34之间,上式中=3.4穿越电抗(单相于普通变压器的短路电抗)系统300MW火电厂QFS发电机、变压器、厂用电的标幺值:如图5.3所示:图5.3 等值电抗示意图发电机: =0.0915变压器: =0.0672厂用变一次侧: =0.056厂用变二次侧: =0.393 5.4.4 短路计算为计算不同短路点的短路电流值,需将等值网络分别化简为以短路点为中心的辐射网络,并求出各电源与短路点之间的电抗,即转移电抗:1) 化简d1短路点的等值网络:由图5.3化简得图5.4图5.4

42、 d1点短路化简等值电抗示意图对图5.4进一步化简如下:图5.5 d1点短路等值电抗化简示意图d1点的短路电流计算过程如下:a. 此时转移阻抗为:b.计算电抗为:c.由计算电抗查运算曲线得各电源0.1s短路电流标幺值d.电源点供给基准电流:(若不损耗)3500MW电源侧: 900MW电源侧:900MW电源侧: e.电源点供给的短路周期分量有效值3500MW电源侧:=3.55KA 900MW电源侧:=1.3605KA 900MW电源侧:=1.3605KA 短路点总短路电流:=3.55+1.3605+1.3605=6.071(KA)f.短路容量和短路电流最大值:短路容量:冲击电流:若取冲击系数则冲

43、击电流:全电流: KA2 ) 对d2、d3、d4、d5、d6、d7短路点进行短路计算:a.等效阻抗计算:图5.6 2点短路等值电抗示意图化简图5.6如下: 图5.6 2点短路等值网络 由图可知: 图5.7 2点短路等值电抗示意图 由图5.7化简得:由图5.7化简到图5.8如下: 图5.8 2点短路等值网络示意图由于d2、d3、d4、d5、d6、d7计算结果一样,对d2进行计算即可。其所归算转移阻抗分别为:b.计算阻抗可为:c.由计算电抗查运算曲线得各电源0.1s短路电流标幺值由曲线可知,当3.45,各时刻的短路电流均相等,相当于无限大电源的短路电流,可以用1/求得。d.电源点供给基准电流:(若

44、不损耗) 3500MW电源侧:300MW电源侧: =10.191500MW电源侧:= 2.037e.电源点供给的短路周期分量有效值:3500MW电源侧:=20.19 300MW电源侧:=18.03 1500MW电源侧:=6.62 短路点总短路电流=20.19+18.03+6.62=44.84(KA)f.短路容量和短路电流最大值:短路容量: 冲击电流:若取冲击系数则冲击电流: (KA) 全电流: (KA)3) 对d8、d9、 d10、d11、d12、d13进行短路电流计算图5.9 8系列短路点等值电抗示意图1由图5.9化简到图5.10得:图5.10 8系列短路点等值电抗示意图2由图5.10化简到

45、图5.11得:b.计算阻抗可为:由于计算电抗大于3,所以采用KA 对d8、d9、 d10、d11、d12、d13进行短路电流的冲击电流计算:因为所以周期分量有效值为:KA短路容量和短路电流最大值:短路容量:冲击电流:全电流: 表5.3 短路电流计算结果表短路点位置短路点平均工作电压短路电流周期分量起始值短路容量短路电流冲击值短路全电流最大有效值U(kV)I"(kA)S" (MVA)ich(kA)Ich(kA)D1、D2、D3500kV母线500KV6.0715257.615.8819.496D4D9发电机出口20KV44.841553.2576117.29770.114D1

46、0D156.3kV母线6.3KV70.87773.31185.41110.846 电气设备的选择为了满足电力生产和保证电力系统运行的稳定性和经济性,发电厂和变电所中安装有各种电气设备,根据电气设备的作用不同,可以将电气设备分为一次设备和二次设备。由于各种电气设备的具体工作条件并不完全相同,所以,它们的具体选择方法也不完全相同,但基本要求是相同的。即,要保证电气设备可靠的工作,必须按正常工作条件选择,并按短路情况校验其热稳定和动稳定;由文献可知:电气设备选择的一般原则1)应满足正常运行、检修、短路和过电压情况下的要求,并考虑远景发展。2)应按当地环境条件校核。3)应力求技术先进和经济合理。4)与

47、正个工程的建设标准应协调一致。5)同类设备应尽量减少品种。6)用新的产品均应有可靠的试验数据,并经正式鉴定合格。6.1高压断路器的选择高压断路器是电力系统最重要的控制和保护设备。它的功能是接通和断开正常工作电流、过负荷电流和故障电流,它是开关电气中最完善的一种设备。在正常运行时,可用它来将用电负荷或某线路接入或退出电网,起倒换运行方式的作用;当设备或线路上发生故障时,可通过继电保护装置联动断路器迅速切除故障用电设备或线路,保证无故障部分仍正常运行。由此可见,高压断路器在电力系统中担负着控制和保护电气设备或线路的双重作用。高压断路器具有分断能力强、性能稳定、工作可靠和运行维护方便的特点,其核心部

48、件是灭弧装置和触头。按使用不同的灭弧介质而生产了各类高压断路器,目前我国电力系统中应用的断路器有如下几种:高压空气断路器是以压缩空气为灭弧介质和弧隙绝缘介质。并兼作操作机构的动力,操作机构与断路器合为一体。六氟化硫(SF)高压断路器则采用SF气体作为灭弧介质,这种断路器具有开断能力强、全开断时间短,断口开距小,体积小,质量较轻,维护工作量小,噪声低,寿命长等优点;但结构较复杂,金属消耗量较大,制造工艺、材料和密封要求高,价格昂贵。目前国内生产的SF断路器有10500KV电压级产品。SF断路器及以SF为绝缘的有关电器组成的封闭组合电器(GIS),在城市高压配电装置中的应用日益广泛。真空高压断路器

49、是利用真空的高介质强度来实现灭弧的断路器。这种断路器具有开断能力强,灭弧迅速,触头不易氧化,运行维护简单,灭弧室内不需检修,结构简单、体积小、质量轻,噪声低、寿命长,无火灾和爆炸危险等优点;但制造工艺、材料和密封要求较高,开断电流和断开电压不能做的很高。目前国内只生产35KV及以下电压等级产品。油高压断路器是利用变压器油作为灭弧和弧隙绝缘介质。按其绝缘结构及变压器油所起的作用不同,分为多油式和少油式两种高压断路器。多油高压断路器的变压器油除了作为灭弧介质外,还作为弧隙绝缘及带电部分与接地外壳(油箱)之间的绝缘。少油高压断路器的变压器油只作为灭弧介质和弧隙绝缘介质,其油箱带电,油箱对地绝缘则通过

50、瓷介质(支持瓷套)来实现。少油高压断路器的灭弧能力较强,工作安全可靠,维护方便,而且体积小,用油量少、重量轻,价格便宜,所以在电力系统中获得最为广泛的采用。在20KV及以下电压等级的供配电系统中广泛采用SN10系列(户内式)断路器,在 20KV以上则大量使用SW4和SW6(户外式)断路器。a: 断路器种类的选择: 断路器LW-500系列b:按额定电压选择:, 500KV 式(6.1)式中: U-安装地点电网额定电压c:按额定电流选择: I=499.23(KA) I(KA),即499.23KA 式(6.2)式中: I-流过高压断路器的最大持续工作电流I -高压断路器的额定电流d:按额定开断电流选

51、择:e:热稳定校验 :Q= ItQ 式(6.3)式中: Q-电器设备允许的短时热效应Q-短时电流热效应表6.1 LW6500/3150技术参数表型号额定电压KV额定电 流A断流容量MVA额定断流量KA极限通过电KA热稳定电KA固有分闸时间S峰值4SSW6-500/31505003150600050125500.04It= 4=10000(KA)2S 电弧持续时间取0.06S,热稳定时间为:=1.1+0.04+0.06=1.2S>1S故忽略非周期分量。查短路电流计算曲线并计算短路电流的有名值为I=2.11+2.6=11.18KAI=2.09+2.6=11.06KAQ=1.2=245.361

52、.2=3.22(KA)2S,所以, t>,满足热稳校验。 h.动稳定校验: ;断路器在母线中间,所以500KV;即: =125kA=15.881KA满足校验要求又由电压可知,先可选择断路器为:短路器LW-500系列、一台半断路器,型号为: LW6500/31506.2 隔离开关的选择隔离开关是一种没有专门灭弧装置的开关设备,主要用来断开无负荷电流的电路,隔离高压电流,在分闸状态时有明显的断开点,以保证其他电气设备的安全检修。在合闸状态时能可靠地通过正常负荷电流及短路故障电流。因它未有专门的灭弧装置,不能切断负荷电流及短路电流。因此,隔离开关只能在电路已被断路器断开的情况下才能进行操作,严

53、禁带负荷操作,以免造成严重的设备和人身事故。只有电压互感器、避雷器、励磁电流不超过2A的空载变压器及电流不超过5A的空载线路,才能用隔离开关进行直接操作。高压隔离开关一般可分为户内式和户外式两种。户外式高压隔离开关:GW435G型高压隔离开关也是目前应用较广泛的设备。它为双柱式结构,制成单极型式,借助于交叉连杆组成三极联动的隔离开关,也可作单极使用。主要用于220KV及以下各型配电装置,系列全,可以高型布置,重量较轻,可以手动,电动操作。GW6型高压隔离开关的特点为220500KV,单柱、钳夹、可以分相布置,220KV为偏折,330KV为对称折,多用于硬母线布置或做为母线隔离开关 。GW7型高压隔离开关的特点为220500KV,三柱式、中间水平转动,单相或三相操作,可以分相布置,多用于330KV及以上的屋外中型配电装置。户内式高压隔离开关:GN6、GN10的特点为三级,可以前后连接,可以立装、平装和斜装,价格比较便宜,主要用于屋内配电装置,成套的高压开关柜;GN10的特点为单极,大电流300013000A

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论