




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、 本 科 毕 业 论 文( 2013届) 题 目: 大数定律及其应用 学 院: 数学与信息科学学院 专业: 统计学 班级: 09统计 姓 名: 学 号: 指导老师: 完成日期: 2013年4月1日 目 录§1、引言2§2、大数定律的发展历程3§3、常见的大数定律及中心极限定理4 §3.1常见的大数定律4 §3.2常见的中心极限定理5§4、大数定律的应用6 §4.1大数定律在数学分析中的应用6 §4.1.1 在积分方面的应用6 §4.1.2 在极限中的应用7 §4.2大数定律在生产生活中的应用9
2、§4.2.1 误差方面的应用9 §4.2.2 估计数学期望和方差10 §4.3大数定律在经济中的应用11 §4.3.1 大数定律在保险业中的应用11 §4.3.2 大数定律在银行经营管理中的应用12§5、结束语13§6、致谢13参考文献14. 大数定律及其应用 (温州大学数学与信息科学学院 09统计) 摘要: 大数定律顾名思义就是指当样本数据量很大的时候,然后某一变量就会呈现出某种规律性,这一呈现出规律性的变量就是我们经常说的平均值,即当样本数据量很大的时候,平均结果将稳定于某一稳定值。大数定律在概率论中的重要性不言而喻,而
3、且其在数学领域以及经济生活领域也有着非常重要的作用。本文列举了我们在大学阶段经常遇到的一些大数定律和中心极限定理,通过一些具体的例题,介绍了常见的大数定律和中心极限定理在一些重要领域的应用,具体包括在数学分析中求极限和积分,预测误差,近似计算,以及在保险业和银行经营管理方面的应用,进一步阐明了大数定律与中心极限定理在各分支学科中的重要作用和应用价值。关键词:大数定律;中心极限定理;经济生活;应用§1、引言 大数定律对于很多人来说都很陌生,即使学过概率论的也说不出个所以然。记得刚学大数定律的时候,觉得这个定理好难理解,书本反复翻了几次还是不懂。感觉这定理没什么作用,理论性这么强,没什么
4、应用价值。直到后来学了中心极限定理,介绍了其大量应用,例如在保险业中的应用,可以说保险业离不开中心极限定理。这才知道自己错了,原来大数定律也有着非常重要的作用,因为中心极限定理正是基于大数定律的基础上而发展出来的定理,没有大数定律作为基础是不会有中心极限定理的。大数定律与中心极限定理是概率论中具有标志性的两类定理,其作用恰如一颗纽带,很好地承接了概率论与数理统计。大数定律所要阐明的是大量随机现象平均结果的稳定性,即当样本量很大的情况下,样本的平均值可以近似看作总体平均值。因为在实际生活中,当我们要考查某一变量,总体数据统计起来往往难度过大甚至不可能,这时我们就需要用到大数定律。我们先统计总体的
5、一个样本量,这个样本量要足够大,一般根据总体而定,然后考查这个样本数据的特征,最后样本数据的结果可以近似看作是总体的结果。例如:我们要考查某一地区居民的月平均消费水平,如果要去统计这一地区所有居民月消费额工作量就会太大,有了大数定律,我们只要抽取足够数量的居民,统计他们的月消费额,最后这一样本量的平均值就可以近似看作这一地区居民平均消费额。这种思想恰恰是概率论中最为重要的思想,而这种思想在数学领域也有着相当重要的作用。对于中心极限定理我们要更为熟悉,它比大数定律论述更为详细具体。中心极限定理主要论述的是其他分布和正态分布之间的某种内在关系,一般对于某一总体,不管其服从什么分布,泊松分布也好,二
6、项分布也好,只要考查的样本数据量足够大,那么样本的均值就近似服从正态分布。§2、大数定律的发展历程对于大数定律,不少人可能有所耳闻,但是对于大数定律的发展历史,可能就很少有人清楚了。我们都知道,大数定律研究的是随机现象统计规律性的一类定理,当我们大量重复某一相同的实验的时候,其最后的实验结果可能会稳定在某一数值附近。就像抛硬币一样,当我们不断地抛,抛个上千次,甚至上万次,我们会发现,正面或者反面向上的次数都会接近一半。除了抛硬币,现实中还有许许多多这样的例子,像掷骰子,最著名的实验就是泊松抛针实验。这些实验都像我们传达了一个共同的信息,那就是大量重复实验最终的结果都会比较稳定。那稳定
7、性到底是什么?怎样去用数学语言把它表达出来?这其中会不会有某种规律性?是必然的还是偶然的?这一系列问题其实就是大数定律要研究的问题。很早的时候,人们其实就发现了这一规律性现象,也有不少的数学家对这一现象进行了研究,这其中就包括伯努利(后来人们为了纪念他,都认为他是第一个研究这一问题的人,其实在他之前也早有数学家研究过)。伯努利在1713年提出了一个极限定理,当时这个定理还没有名称,后来人们称这个定理为伯努利大数定律。因此概率论历史上第一个有关大数定律的极限定理是属于伯努利的,它是概率论和数理统计学的基本定律,属于弱大数定律的范畴。我们知道,当大量重复某一实验时,最后的频率无限接近事件概率。而伯
8、努利成功地通过数学语言将现实生活中这种现象表达出来,赋予其确切的数学含义。他让人们对于这一类问题有了新的认识,有了更深刻的理解,为后来的人们研究大数定律问题指明了方向,起到了引领作用,其为大数定律的发展奠定了基础。除了伯努利之外,还有许许多多的数学家为大数定律的发展做出了重要的贡献,有的甚至花了毕生的心血,像德莫佛拉普拉斯,李雅普诺夫,林德伯格,费勒,切比雪夫,辛钦等等。这些人对于大数定律乃至概率论的进步所起的作用都是不可估量的。1733年,德莫佛拉普拉斯经过推理证明,得出了二项分布的极限分布是正态分布的结论,后来他又在原来的基础上做了改进,证明了不止二项分布满足这个条件,其他任何分布都是可以
9、的,为中心极限定理的发展做出了伟大的贡献。在这之后大数定律的发展出现了停滞。直到20世纪,李雅普诺夫又在拉普拉斯定理的基础上做了自己的创新,他得出了特征函数法,将大数定律的研究延伸到函数层面,这对中心极限定理的发展有着重要的意义。到1920年,数学家们开始探讨中心极限定理在什么条件下普遍成立,这才有了后来发表的林德伯格条件和费勒条件,这些成果对中心极限定理的发展都功不可没。经过几百年的发展,大数定律体系已经很完善了,也出现了更多更广泛的大数定律,例如切比雪夫大数定律,辛钦大数定律,泊松大数定律,马尔科夫大数定律等等。正是这些数学家们的不断研究,大数定律才得以如此迅速发展,才得以完善。§
10、;3、常见的大数定律及中心极限定理§3.1常见的大数定律大数定律形式有很多种,我们仅介绍几种最常用的大数定律。定理1(伯努利大数定律)在n重伯努利实验中,假设某一事件总共出现的次数为,并且每次试验中该事件发生的概率是p,其中0<p<1,那么对于,都有 说明:这个定理以严谨的数学公式说明了我们刚才谈到的现实中经常出现的现象,即当大量重复某一实验时,最后实验的频率无限接近实验的概率。所以,在现实生活和工作中,当试验次数相当大时,就可以灵活地运用这个定理。定理2(切比雪夫大数定律) 假设是一列随机变量,并且两两互不相关,它们的方差有界,即存在常数,使得,那么对于任意的,都有 在
11、上述的定理中,因为用到切比雪夫不等式,而切比雪夫不等式对方差有这方面要求,其实方差这个条件并不是必要的。例如独立同分布时的辛钦大数定律。 定理3(辛钦大数定律) 假设是独立同分布的随机变量序列,并且数学期望,且a是有限的,则对于任意的,有 上式也可表示为或,并且称依概率收敛于。 定理4(泊松大数定律)假设是一组随机变量序列,且两两相互独立,并且有 ,其中p, q满足条件:,那么我们称服从泊松大数定律。其实从某种程度上来讲,泊松大数定律可以认为是伯努利大数定律的延伸与普及,我们知道伯努利大数定律以严谨的数学公式说明了现实中经常出现的现象,即当大量重复某一实验时,最后实验的频率无限接近实验的概率。
12、但泊松大数定律说明的是,独立进行的随机试验的频率依旧具有其平稳性,即使实验条件发生变化。这就是泊松大数定律比伯努利大数定律更为宽泛的地方。 定理5(马尔科夫大数定律)对于随机变量序列,若有则有.§3.2常见的中心极限定理 定理 6(列维林德伯格中心极限定理) 假设随机变量是一系列独立同分布的随机变量,其数学期望和方差,则对任意实数,都有 我们又称定理6为独立同分布的中心极限定理,从这个定理可以看出正态分布在概率论中的特殊地位,不管呈何种分布,但只要,则有随机变量或者我们可以说,当时,对于一系列随机变量,只要满足独立同分布,则 近似地服从正态分布。 定理 7 (拉普拉斯中心极限定理)假
13、设随机变量服从二项分布,那么对于任意的有界区间,恒有表达式成立,这就说明正态分布是二项分布的极限分布。一般地,如果,则 这个公式给出了当较大时,关于二项分布的概率计算方法。定理 8 (林德伯格定理) 假设是一系列随机变量序列,且相互独立,而且还符合林德伯格的前提假设,则对任何存在的x,都有这个定理证明了以下结论:大量微小而且独立的随机因素引起并积累而成的变量,必将是一个正态随机变量。由林德伯格条件可看到定理并不要求各个加项“同分布”,因而它比前面的列维林德伯格中心极限定理更全面,事实上列维林德伯格中心极限定理可以由该定理推出。说明:中心极限定理讨论的问题是独立随机变量和的分布的极限问题,通常在
14、一定条件下,这些分布弱收敛于退化分布,我们称这就是大数定律。而中心极限定理要证明的问题是,随机变量和的分布与正态分布之间的关系,在其服从正态分布的基础上再来探讨需满足的条件。中心极限定理从根本上让我们认识了正态分布产生的源泉,因而可以把中心极限定理看作是正态分布解决各种实际问题的理论基础。§4、大数定律的应用§4.1大数定律在数学分析中的应用 §4.1.1 在积分方面的应用我们知道有时候求积分,被积函数可能会比较复杂,原函数求不出来,然后用普通的近似方法也很难做到,这时我们就需要用到大数定律求解,以大数定律作为理论基础,通过近似求解可获得积分的近似值。 例1 令则
15、,用随机投点法求在区间上的积分的近似值.解 服从正方形上的均匀分布,则可知服从上的均匀分布,也服从上的均匀分布,且与独立.又记事件,则的概率为,即定积分的值就是事件的概率.由伯努利大数定律,我们可以用重复试验中出现的频率作为的估计值。下面用随机投点法来得到出现的频率:先用计算机产生上均匀分布的个随机数:,这里不妨令.对对数据,记录满足不等式的次数,就是事件发生的频数,由此可得事件发生的频率,则.又时,模拟值那么所求近似值§4.1.2 在极限中的应用在数学分析中,极限的证明通常也是比较困难的。虽然求极限的方法比较多,这里我们同样可以运用概率的方法。但是对于较为复杂的极限,概率方法往往难
16、以求出结果,接下来我们就用大数定律来求解这一类问题。例2 假设,求下面极限解: 假设随机变量在0,1上服从均匀分布,而且相互独立,则有 , 易见: 由独立同分布可知,独立同分布。又根据辛钦大数定律可知:从而, 例3 假设和是a,b上的连续函数,并且满足条件:存在常数 c>0, 使,试证明: 证 假设是在a,b上服从均匀分布且独立的随机变量,令 那么由大数定律知: , .现证明:依概率收敛于其中 , .由于 可见 故在点连续:对任意的,存在,当和时,.因此, 由此可见: §4.2大数定律在生产生活中的应用 §4.2.1 误差方面的应用 下面我们介绍一下怎么利用大数定律解
17、释测量随机误差。理论基础:根据大数定律我们知道,对一系列随机误差 ,有 这意味着当时,测量结果的平均值和实际真值a将无限的接近,所以这样的方法是有理论依据的,一般都行得通。例4 有一栋高楼需要我们测量其精确高度,现在利用某种仪器独立测量了n次,所得测量数据为,假定测量仪器没有系统误差,那么当测量次数足够大即时,是否能近似把看作是这栋楼高度测量误差的方差?解: 假设(i=1,2,n)为n次测量所得的结果,且满足.则第i次测量的误差的数学期望和方差分别为:设,i=l,2,n,则也独立同分布。在无系统误差条件下,即有(i=1,2n)因而由切比雪夫大数定律可知:即 所以当时,随机变量依概率收敛于,即当
18、时,我们 可以把近似看作是该模具测量误差的方差。§4.2.2 估计数学期望和方差 在分布型未知的情况下估计数学期望及方差假设及都是随机变量,并且有: 结合大数定律,我们可以用统计量样本均值来近似估计期望,用样本二阶矩近似估计总体二阶矩,即: 从而有由此得方差的估计: §4.3大数定律在经济中的应用 §4.3.1 大数定律在保险业中的应用大数定律不但在数学领域,生产生活方面有着重要应用,其在经济发展中的作用也是不容忽视的。大数定律在某些经济领域的作用人们已经熟知,并且极大地应用到现实的生活工作之中,例如其在保险业不断蓬勃发展壮大的过程中起到至关重要的作用,可以视为保
19、险业存在的基石。大数定律在保险学上的应用包括保费的厘定,以及保险金的赔偿等等。关于保险金的赔偿其实是符合大数定律的,因为现实中每个人的保费是不同的,但是因为投保的基数很大,所以根据大数定律,每个投保户的平均赔偿金额将会稳定在某一数值附近。例5 某公司准备为员工开办某年龄段的五年人寿保险业务,有人参加,若是参加保险者交保险金元,若其在五年内死亡,则保险公司将支付赔偿金元,已知在五年内处于该年龄段的健康人死亡的概率是,那么:保险公司将赔偿金定为多少,才能使保险公司的期望盈利大于万元;如果保险公司将赔偿金定为元,要使保险公司盈利万元,每位参保者至少应交保险金为多少元?如果保险公司将赔偿金定为元,要使
20、保险公司盈利的可能性大于,每位参保者至少应交保险金为多少元?解 上述问题的解决方法如下:由于保险公司从每个人身上获得的收益为,所以保险公司从个人身上获得的期望收益应满足 从上述不等式可解出,即元时保险公司期望盈利可超过万元.现在要确定,而元是固定的,仍然用表示公司从每个参保者身上获取的收益,那么的分布律为期望收益 (元)要使保险公司期望盈利万元,则应满足 由此可推得元即赔偿金元时,要使保险公司盈利万元,每位参保者至少应交元.仍用随机变量表示中的死亡人数,那么服从,而要使公司盈利万元 即 等价于死亡人数 如果想让 即通过查泊松分布表可知 元即赔偿金元时,要使保险公司盈利的可能性大于,每位参保者至
21、少交纳元.说明: 1、理论依据:保险的赔偿遵从大数定律,即如果投保人数充分大,则平均赔偿率几乎恒等于一个常数。利用大数定律与中心极限定理计算相关事件的概率。 2、应用与推广 :大数定律的一个重要应用是在保险学方面。基本原理是一系列相互独立随机变量的平均值几乎恒等于一个常数,这个常数就是它的数学期望,或者说一系列相互独立随机变量的平均值依概率收敛于它的数学期望,可以广泛应用于保险精算、资源配置等方面。 §4.3.2 大数定律在银行经营管理中的应用 我们知道大数定律在许多领域有着重要的作用,不过目前为止,人们对其并没有充分认识,甚至在现实生活工作中,他们的所作所为已经不知不觉地暗含了大数
22、定律,很多人自己没有发现而已。这其中就包括被我们经常忽略的大数定律在控制银行经营风险中的作用,通常我们这里指的银行是中小非国有银行。大数定律在银行中的应用不怎么常见,没有像保险业中那样应用广泛。因为应用大数定律的银行一般都是非国有中小银行(这类银行本身数量就不多),再加上大数定律在银行中的应用领域比较有限,所以这就导致了大数定律在银行中的应用比较少见,这方面的体系也不完善。这里在说明大数定律在银行体系中的应用之前,我们先来了解一下大数定律是如何在保险市场控制风险的。我们知道保险市场风险具有随机性,但是因为投保群体很大,所以运用大数定律,我们照样可以准确地计算出风险出现的概率,从而确定风险损失和
23、经营成本。但是银行的信用风险受各种不确定性条件的影响,具有很强的离散性,不服从一种规律的分布状态。那么大数定律是怎样控制银行的经营风险的呢?银行的经营风险更多情况下指的是贷款风险,即银行贷款出现坏账,从而导致银行亏损的情况。我们这里所讨论的大数定律控制风险指的就是这一情形。贷款是一个银行发展的必须途径,如果一个银行贷款业务运营的很好,那么可想而知该银行肯定发展欣荣。但是如果一个银行贷款业务出现问题,经常出现坏账,那这个银行的发展肯定受到影响,严重时甚至可能导致银行倒闭。既然这样,那我们只要杜绝了坏账不就行了吗?只要贷款不出现坏账那银行就不会亏损了。想法固然很好,但实际中,由于存在信息不对称以及
24、其他一些不可预测因素,银行对每个借款人的信用不能清楚地掌握。就算某个人之前信用很好,但是我们不能排除他就不会因为某种原因携款跑路,所以银行无法做到杜绝坏账。虽然不能杜绝坏账,但是银行可以事先对这一情况进行分析,利用大数定律预测坏账出现的概率,然后在制定相关的策略和贷款政策的时候,将这个事先预测的概率考虑进去,这样可以对坏账有一定的掌控,从而可以较好地控制银行经营风险。然而要想利用大数定律来预测坏账出现的概率,银行贷款必须要满足两个条件:(1)每一笔贷款都必须是小额的;(2)借款的群体要足够大。第一个条件是要保证每一笔贷款不会对总体贷款平均结果产生影响,因为学过概率论的知道,如果总体里面有一项很
25、大,那么这一项将影响总体平均结果的走向;其次,这个条件还能降低因借款人的道德风险给银行带来的损失,因为如果出现一笔大额坏账,那么银行将会严重亏损,对于规模较小的银行可能会直接倒闭。另外一个条件则是大数定律最本质的要求,因为只有在样本量很大的情况下大数定律预测的结果方才准确。这两个条件缺一不可,非国有中小银行只有同时达到这两个条件方才能保证贷款业务的欣荣。接下来我们就举个例子来具体说明大数定律在银行中的应用。例:某一非国有中小银行经营10万元贷款业务,贷款的年利率为10%,并且该银行根据过去的贷款信息结合大数定律估计出现坏账的概率为1,现在该银行期望该项业务年收益1000万,问至少需要多少笔贷款
26、?解:假设总共有n笔贷款,用Y表示银行的收益则 Y=n×(1-1)×105×10-n×1×105 =9990n-100n =9890n所以 Y107 即9890n107 得到 n1011.12所以,至少需要1012笔贷款才能保证年收益1000万。其实像这样的情况在温州中也是比较常见的,温州是全国第一个实行金融改革的城市,在改革的过程中,很多中小银行和农村信用合作社也做了相应的变革。就拿在贷款这一方面来说,许多中小银行和农村信用合作社在经营管理中很好地利用了大数定律,并结合自身的优势,灵活地经营这项业务,取得了不错的成绩。§5、结束语首
27、先我们提出了常见的大数定律及相关的中心极限定理,然后讨论了它们的应用,具体包括数学分析,生产生活,经济领域,这可以为专业人员管理提供参考,对教学无疑也是非常有益的。通过大量样本的分析和预测,结合大数定律预测实验的期望结果,这对于在现实工作中的预测也很有参考意义。在当前的社会环境下,经济发展是重要问题。大数定律在经济学中的应用将会越来越为人们关注。§6、致谢在写毕业论文的过程中,黎老师一直在给于我很多帮助,从一开始的跟我分析怎么写,跟我介绍参考文献,到后来帮我审查文章,纠正错误等等,最后论文才得以成形,在这里我要对老师说一声谢谢,老师您辛苦了。参考文献1 路庆华.几个大数定律的证明及应
28、用.石家庄职业技术学院学报,2007年8月第19卷第4期: 2 -5 2 张树美,张荣基.关于大数定律定义的讨论.广西师范学院学报(自然科学版),2002年6月第19卷增刊:36-38.3 魏宗舒.概率论与数理统计M.北京:高等教育出版社,1983:56-854 复旦大学.概率论(第一册)M.北京:高等教育出版社,1979:82-115.5 黄清龙,阮宏顺.概率论与数理统计M.北京:北京大学出版社,2005:93-1266 周概容.概率论与数理统计M.北京:高等教育出版社,1984:51-767 杨亚非.概率论与数理统计M.北京:化学工业出版社,2003:38-528 中山大学.概率论与数理统
29、计(上册)M.北京:人民教育出版社,1980:258-259.9 浙江大学编.概率论与数理统计M.北京:化学工业出版社,1989:96-12110 林正炎,陆传荣,苏中根编著.概率论与数理统计M.北京:高等教育出版社.48-7511 于进伟,赵舜仁.大数定律与中心极限定理之关系.高等数学研究,2001年3月 第4卷第1期:17-1912 钟镇权.关于大数定律与中心极限定理的若干注记.玉林师范学院学报(自然科学),2001年第22卷第3期:135-137.13 王小胜.大数定律的几个应用.河北建筑科技学院学报,2005年3月第22卷第1期:56-58.14 封希媛.大数定律与中心极限定理在实际中的应用.青海师范大学学报(自然科学版),2006年第2期:47-49.15 唐莉,李雁如.大数定律与中心极限定理的实际应用.广东技术师范学院学报,2005年第6期:12-12.16 王东红.大数定律和中心极限定理在保险
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 出资入股美甲店合同范本
- 办公用品合同范本
- 债券非交易过户合同范本
- 公司住宿协议合同范本
- 兼劳动合同范本
- 2024年台州海泊荟供应链有限公司招聘笔试真题
- 制作安装门窗合同范本
- 中英文加工合同范本
- 企业果菜订购合同范例
- 人力劳务合作合同范本
- 图解自然资源部《自然资源领域数据安全管理办法》
- 快消品配送管理方案
- 2024落实意识形态责任清单及风险点台账
- 高校排球教案全集-专项课
- 教师师德师风培训专题课件
- 2024年乡镇综合行政执法工作总结模板
- 手术室压疮预防课件
- 中国假肢行业分析报告:进出口贸易、行业现状、前景研究(智研咨询发布)
- 牛肉干市场洞察报告
- 《Photoshop CC图像处理》课件-任务9 使用时间轴与动作
- 04S519小型排水构筑物(含隔油池)图集
评论
0/150
提交评论