极坐标和参数方程基础知识与重点题型_第1页
极坐标和参数方程基础知识与重点题型_第2页
极坐标和参数方程基础知识与重点题型_第3页
极坐标和参数方程基础知识与重点题型_第4页
极坐标和参数方程基础知识与重点题型_第5页
已阅读5页,还剩1页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、高中数学回归课本校本教材24(一)基础知识 参数极坐标1.极坐标定义:M是平面上一点,表示OM的长度,是,则有序实数实数对,叫极径,叫极角;一般地,。2.常见的曲线的极坐标方程(1)直线过点M,倾斜角为常见的等量关系:正弦定理,;(2)圆心P半径为R的极坐标方程的等量关系:勾股定理或余弦定理;(3)圆锥曲线极坐标:,当时,方程表示双曲线;当时,方程表示抛物线;当时,方程表示椭圆.提醒:极点是焦点,一般不是直角坐标下的坐标原点。极坐标方程表示的曲线是双曲线3.参数方程:(1)圆的参数方程: (2)椭圆的参数方程:(3)直线过点M,倾斜角为的参数方程:即,即注:,据锐角三角函数定义,T几何意义是有

2、向线段的数量;如:将参数方程为参数化为普通方程为将代入即可,但是;4. 极坐标和直角坐标互化公式: 或,的象限由点(x,y)所在象限确定.(1)它们互化的条件则是:极点与原点重合,极轴与x轴正半轴重合.(2)将点变成直角坐标,也可以根据几何意义和三角函数的定义获得。5. 极坐标的几个注意点:(1)极坐标和直角坐标转化的必要条件是具有共同的坐标原点(极点)如:已知圆的参数方程为 (为参数),若是圆与轴正半轴的交点,以圆心为极点,轴的正半轴为极轴建立极坐标系,求过点的圆的切线的极坐标方程。如:已知抛物线,以焦点F为极点,轴的正半轴为极轴建立极坐标系,求抛物线的极坐标方程。即。(2)对极坐标中的极径

3、和参数方程中的参数的几何意义认识不足如:已知椭圆的长轴长为6,焦距,过椭圆左焦点F1作一直线,交椭圆于两点M、N,设,当为何值时,MN与椭圆短轴长相等?(3)直角坐标和极坐标一般不要混合使用:如:已知某曲线的极坐标方程为。(1)将上述曲线方程化为普通方程;(2)若点是该曲线上任意点,求的取值围。(二)基本计算1.求点的极坐标:有序实数实数对,叫极径,叫极角;如:点的直角坐标是,则点的极坐标为提示:都是点的极坐标.2. 求曲线轨迹的方程步骤: (1)建立坐标系;(2)在曲线上取一点P;(3)写出等式;(4)根据几何意义用表示上述等式,并化简(注意:);(5)验证。如:长为的线段,其端点在轴和轴正

4、方向上滑动,从原点作这条线段的垂线,垂足为,求点的轨迹的极坐标方程(轴为极轴),再化为直角坐标方程.解:设点的极坐标为,则,且,点的轨迹的极坐标方程为.由可得, 其直角坐标方程为.3.求轨迹方程的常用方法:直接法:直接通过建立、之间的关系,构成,是求轨迹最基本的方法.待定系数法:可先根据条件设所求曲线的方程,再由条件确定其待定系数,代回方程代入法(相关点法或转移法).如:从极点作圆的弦,求各弦中点的轨迹方程.解:设所求曲线上的动点的极坐标为,圆上的动点的极坐标为由题设可知,将其代入圆的方程得:.定义法:如果能够确定动点轨迹满足某已知曲线定义,则可由曲线定义直接写出方程.交轨法(参数法):当动点

5、坐标之间的关系不易直接找到,也没有相关动点可用时,可考虑将、均用一中间变量(参数)表示,得参数方程,再消去参数得普通方程.4.参数和极径的几何意义的运用:表示OM的长度;T几何意义是有向线段的数量;如:已知过点的直线与轴正半轴、轴正半轴分别交于A B两点,则AB最小值为提示:设倾斜角为,则或AB=,则,令,所以,注意:本题可以取倾斜角的补角为如 过抛物线的焦点作倾斜角为的直线,交抛物线于两点,求线段的长度.解:对此抛物线有,所以抛物线的极坐标方程为,两点的极坐标分别为和, , .线段的长度为16.5.参数方程的应用-求最值:如:已知点是圆上的动点,(1)求的取值围;(2)若恒成立,数的取值围。

6、.(2).如:在椭圆上找一点,使这一点到直线的距离的最小值.解:设椭圆的参数方程为, 当,即时,此时所求点为.C.选修4 4 参数方程与极坐标已知极坐标系的极点与直角坐标系的原点重合,极轴与轴的正半轴重合。若曲线C1的方程为,曲线C2的方程为。(1)将C1的方程化为直角坐标方程;(2)若C2上的点Q对应的参数为,P为C1上的动点,求PQ的最小值。提示:(1)(2)当时,得,点到的圆心的距离为(图)xBAOP,所以的最小值为在极坐标系中,求经过三点O(0,0),A(2,),B(,)的圆的极坐标方程解:设是所求圆上的任意一点,则, 故所求的圆的极坐标方程为已知极坐标系的极点与直角坐标系的原点重合,

7、极轴与轴的正半轴重合.若直线的极坐标方程为.(1)把直线的极坐标方程化为直角坐标系方程;(2)已知为椭圆上一点(已知曲线C的参数方程为,)求到直线的距离的最大值.解:(1)直线l的极坐标方程,则,即,所以直线l的直角坐标方程为; (2)P为椭圆上一点,设,其中,则P到直线l的距离,其中所以当时,的最大值为在极坐标系中,圆的方程为,以极点为坐标原点,极轴为轴的正半轴建立平面直角坐标系,直线的参数方程为(为参数),判断直线和圆的位置关系解:消去参数,得直线的直角坐标方程为; 即,两边同乘以得,得的直角坐标方程为:, 圆心到直线的距离,所以直线和相交已知曲线的极坐标方程是,直线的参数方程是(为参数)(1)将曲线的极坐标方程化为直角坐标方程;(2)设直线与轴的交点是,是

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论