




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、Dr. Zhili LinA Brief Introduction to Computational Electromagnetics Beihang University 2009-11-02Email: Basic Theory in ElectromagneticsMaxwell Equations (1873, James Clerk Maxwell)Amperes Law with Maxwells correctionFaradays law of inductionGausss lawGausss law for magnetismConstitutive relationsJa
2、mes Clerk Maxwell (18311879)Equation of continuity Mathematical methods for solving electromagnetic problems1.Analytical Methods separations of variables; series expansion; conformal mapping; perturbation methods; transform methods, etc.2.Numerical Methods finite difference method (FDM, including FD
3、TD); finite element method (FEM); method of moments (MoM); transmission-line modeling; Monte Carlo method, etc.Why choosing Numerical Methods ?lThe ordinary differential equations that have close-formed analytical solution are very limited and only for a few specific cases. lAlthough explicit soluti
4、ons can offer a lot of benefits, they are not easily obtained if the problem is complicated in geometrical structure.lWhen the applied medium is complex (inhomogeneous, dispersive), it is often hardly possible to solve the equation analytically.The possibility of Using Numerical Methods - Thanks to
5、the Computer Tech.lIn 60s of 20th century, the modern computer is invented. Since then, obeying the Moores law, computers become more and more powerful.lThe CPU runs faster and faster, the memory becomes larger and lager, the size of a computer becomes smaller and smaller, while the cost of a comput
6、er becomes cheaper and cheaper. lBecause of this, people tend to find some methods that are simple in formula but require large amounts computation that can be easily handled in a computer. As the methods are too many to be all covered, in the following , I will only briefly introduce two methods: F
7、inite-Difference Time-Domain (FDTD) Method Finite Element Method (FEM) Finite-Difference Time-Domain MethodThe Standard Yees CellYee, K. S., “Numerical solution of initial boundary value problems involving Maxwells equations in isotropic media,”IEEE Trans. Antennas Propagat., vol. 14, 1966, pp. 302-
8、307.2627 citations by 16.02.2007 Source: ISI Web of ScienceExt 10HyzFDTD-1D ProblemFor Ampere Law, 1-D Problem:To put the equation in a computer, take the finite-difference approximations of the partial derivatives in time and space:1/21/2,( )( )nnxxxEz tEkEktt,(1/2)(1/2)nnyyyHz tHkHkzxFDTD-Discreti
9、zation1/21/20( )( )(1/2)(1/2)nnxxnnyyEkEktHkHkx11/ 21/ 20(1/ 2)(1/ 2)(1)( )nnyynnxxHkHktEkEkxThis is a time-domain method. Each new value of the electric field E or the magnetic field H is determined by the previous valuesSimilarly,FDTD-Computer AlgorithmThe k represents the location in an array in
10、a computer while n represents timeCalculate En+1/2Calculate Hn+1n=n+1Each time step represents an increment in the total time T = n t.FDTD-Computer AlgorithmFDTD-Parameters and StabilitySelection of the parameters of simulation Cell Size Criterionmaxmaxmaxmin1, and 10 xyz0minmaxmaxmaxrrcf Courant St
11、ability:2221111zyxct1D simulation of an EM pulse propagation in free spaceclear;clf;KE=200;for i=1:KE ex(i)=0; hy(i)=0;endkc=5;t0=80;spread=24; NSTEPS=550; figure(1); plot(ex); hold on; plot(hy); axis(0 KE -1 1); hold off; pause(0.01); endT=0;for n=1:NSTEPS T=T+1; for k=2:KE ex(k)=ex(k)+0.5*(hy(k-1)
12、-hy(k); end pulse=exp(-0.5*(t0-T)/spread)2); ex(kc)=pulse; for k=1:KE-1 hy(k)=hy(k)+0.5*(ex(k)-ex(k+1); endFDTD Codes for InitializationMain Computing LoopVisualizationInserting the source1D simulation of an EM pulse propagation in free space1D simulation of an EM pulse propagation in free space1D s
13、imulation of an EM pulse propagation in free space1D simulation of an EM pulse propagation in free space1D simulation of an EM pulse propagation in free space1D simulation of an EM pulse propagation in free space1D simulation of an EM pulse propagation in free space1D simulation of an EM pulse propa
14、gation in free space1D simulation of an EM pulse propagation in free spaceApplicators can be simulated in FDTD by specifying the material and the source of energy. Here is a simple dipole antenna.A simple dipole antenna -3D simulationThe portion that is to be metal can be specified by just holding t
15、he E field to zero.The excitation comes from just specifying the E field in the gap.The FDTD method will determine the H field, which is an indication of the current in the dipole.3D simulation of a simple dipole antennaThe first set of slides shows the H fields next to the metal of the dipole arms,
16、 which are an indication of the current.The following set of slides shows the H fields next to the metal of the dipole arms, which are an indication of the current.The next set of slides shows the E field in the plane of the gap as it radiates away from the antennaUp until now, we have not discussed
17、 the boundary conditions at the edges of the problem space. These are necessary to keep unwanted reflections from coming back.FDTD -Absorbing Boundary Condition (ABC)Probably the best solution is the perfectlymatched layer (PML) which absorbsout-going waves.The reflection of an outgoing wave is dete
18、rminedby the reflection coefficient ABABFDTD-Absorbing Boundary Condition (ABC)We assume and are complex. It is the imaginary part that leads to absorption,*FmFmDmj0*FmFmHmj0ABC- Perfectly Matched Layer, ,mx y zThere are two conditions to form a PML:0m*Fx*Fx1. The impedance going from the background
19、 medium to the PML must be constant:2. The direction perpendicular to the boundary, the x direction for example, must be the inverse of the other directions:*Fx1*Fy*Fx1*FyABC- Perfectly Matched LayerThe following selection of Simple parameters satisfies these requirements:FmFm1Dm0Hm0D0ABC- Perfectly
20、 Matched Layer0m*Fx*Fx1(x) / j01(x) / j01An outgoing wave sees a constant impedance as its going into the PML. The conductivity causes it to be absorbed once its in the PML.The values of are gradually increased as they go into the PMLFt DH *DEFt HETo implement the PML, we will assume that there are
21、“fictitious” values of and that we can attach to the Maxwells equations.ABC- Perfectly Matched LayerPMLDispersive MaterialThe radiation from a point source is absorbed by the PML.Simulating Dispersive Media202200()( )2srj Example- Lorentz media:10120121012012ee( ) ,eejjrjja Zaa Zaaab Zbb ZbbbDE 1121
22、0110210()nnnnnnbbbaaaDDDEEEUpdating Equation in FDTDHow to ApproximateZ-transform00 ( )( )( )1rtt DHDEHESimulating Dispersive MediaVarious Approaches for Modeling Lorentz Media By FDTD012012,a a a b b bMSE approach :( )( )rrError Recommended References:lA. Taflove and S. C. Hagness, Computational El
23、ectrodynamics: The Finite-Difference Time-Domain Method, 2nd ed. Norwood, MA: Artech House, 2000. (经典大作)lD. M. Sullivan, “Electromagnetic Simulation Using the FDTD Method,” IEEE Press, 2002.(入门书籍)Software:Books:Opti-FDTD,加拿大Optiwave公司开发,时域光子学模拟仿真; Meep (or MEEP) ,MIT 开发,模拟电磁体系; 德国IMST公司的 EMPIRE,射频(R
24、F)器件设计 ;F2P ,KTH 副教授Min Qiu (浙大校友)开发,for photonic devices; XFDTD, 美国 REMCOM 公司 ,高频电磁分析模拟软体,计算SAR值; CFDTD,全名Conformal FDTD,by Wenhua Yu, 复杂金属边界;Finite Element Method(FEM)Example: Electrostatic Problems1-D ProblemTwo Metal PlateBoundary conditions:Analytical solutions:FEM-Discretization of DomainEleme
25、nt Along -Axis (Master Element)Element Along x-Axis.Coordinate Transformation:Finite Element MethodFinite Element MethodWeighted-integral Equationw (x) - Weight functionFinite Element Method12 wNwNEquation for the e-th element :Finite Element MethodFinite Element MethodFinite Element MethodDivided i
26、nto 4 SegmentsFEM-2D ProblemTwo-Dimensional Boundary-Value Problems2-D ProblemFEM-Two-DimensionQuantity u:FEM-Two-DimensionwhereEquations to be solved:FEM-Two-DimensionFinite ElementsFinite element mesh using triangular elementsCoarse Elements FEM-COMSOL multiphysicsExample: Modeling Photonic Crysta
27、lGaAs RodAir Back GroundMenu Panel of the COMSOLMenus COMSOL - Modeling Photonic CrystalSelecting the Models COMSOL - Modeling Photonic CrystalSet Scalar ParametersSuch as wavelength. COMSOL - Modeling Photonic CrystalDRAW MODE- Drawing Domain BoundariesSet length and size COMSOL - Modeling Photonic CrystalPOINT MODE- Setting Properties of Points COMSOL - Modeling Photonic CrystalBOUNDARY MODE- Setting Properties of Boundaries COMSOL - Modeling Photonic CrystalSUBDOMAIN MODE- Setting Propertie
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 火电开工管理办法
- 电力管线管理办法
- 财务顾问服务的合同
- 设备设施管理制度
- 全球气候变化趋势研究
- 视频制作的工作岗位总结
- 高校教师教学能力提升策略在人工智能背景下的探索
- 学生参与敬老活动:经历与反思
- 一类会议接待管理制度内容
- 考勤管理制度图标解释图
- 2024-2030年中国聚乳酸纤维行业销售格局与供需平衡现状调研研究报告
- 自行车安全要求 第2部分:城市和旅行用自行车、青少年自行车、山地自行车与竞赛自行车的要求
- 新版译林英语五年级上第一二单元测试含听力文本和答案
- 丽江古城导游词标准版本
- 教育教学设备采购合同
- Android Studio开发实战(从零基础到App上线)
- 摩托车换车协议书
- 2023年吕梁学院教师招聘考试笔试题库及答案
- 化粪池清理合同(范本):免修版模板范本
- 广东省广州市2024届高三上学期8月阶段训练数学试题
- 脑卒中后吞咽障碍患者进食护理(2023年中华护理学会团体标准)
评论
0/150
提交评论