




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第五章第五章 固体的表面与界面固体的表面与界面 生活中的表面现象生活中的表面现象表面现象产生的原因表面现象产生的原因固体的界面可一般可分为固体的界面可一般可分为表面、界面和相界面表面、界面和相界面:1)表面表面:表面是指固体与真空的界面。表面是指固体与真空的界面。2)界面界面:相邻两个结晶空间的交界面称为相邻两个结晶空间的交界面称为“界面界面”。3)相界面相界面:相邻相之间的交界面称为交界面。相邻相之间的交界面称为交界面。 相界面有三类相界面有三类: 固相与固相的相界面(固相与固相的相界面(SS);); 固相与气相之间的相界面(固相与气相之间的相界面(SV);); 固相与液相之间的相界面(固相
2、与液相之间的相界面(SL)。)。 p2007年度诺贝尔化学奖获得者德国科学家格哈年度诺贝尔化学奖获得者德国科学家格哈德德埃特尔,以表彰他在埃特尔,以表彰他在“固体表面化学过程固体表面化学过程”研究中作出的贡献。研究中作出的贡献。p进行了表面化学的开创性研究,建立了表面化进行了表面化学的开创性研究,建立了表面化学的研究方法。学的研究方法。p通过表面化学过程的研究,向人们展示不同实通过表面化学过程的研究,向人们展示不同实验过程产生表面反应的全貌,如铁为什么生锈、验过程产生表面反应的全貌,如铁为什么生锈、燃料电池如何工作、汽车内催化剂如何工作等。燃料电池如何工作、汽车内催化剂如何工作等。p 表面化学
3、反应对于许多工业生产起着重要作用,表面化学反应对于许多工业生产起着重要作用,例如人工肥料的生产。表面化学甚至能解释臭例如人工肥料的生产。表面化学甚至能解释臭气层破坏,半导体工业也是与表面化学相关联气层破坏,半导体工业也是与表面化学相关联的领域。的领域。p格哈德格哈德埃特尔的工作:氢在金属表面的吸附作埃特尔的工作:氢在金属表面的吸附作用、氨合成的分子机理和固体表面的催化过程用、氨合成的分子机理和固体表面的催化过程等等 5.1 固体的表面及其结构固体的表面及其结构5.2 润湿与粘附润湿与粘附5.1 固体的表面及其结构固体的表面及其结构5.1.1 固体的表面固体的表面5.1.2 固体的表面结构固体的
4、表面结构5.1.1固体的表面固体的表面1.理想表面理想表面2.清洁表面清洁表面q(1)台阶表面)台阶表面q(2)弛豫表面)弛豫表面q(3)重构表面)重构表面3.吸附表面吸附表面4. 固体的表面自由能和表面张力固体的表面自由能和表面张力5. 表面偏析表面偏析6. 表面力场表面力场 1、理想表面、理想表面 没有杂质的单晶,作为零级近似可将清洁表面理没有杂质的单晶,作为零级近似可将清洁表面理想化作为一个理想表面。这是一种理论上的结构完整想化作为一个理想表面。这是一种理论上的结构完整的二维点阵平面。的二维点阵平面。 忽略了晶体内部周期性势场在晶体表面中断的影忽略了晶体内部周期性势场在晶体表面中断的影响
5、,忽略了表面原子的热运动、热扩散和热缺陷等,响,忽略了表面原子的热运动、热扩散和热缺陷等,忽略了外界对表面的物理化学作用等。忽略了外界对表面的物理化学作用等。 这种理想表面作为半无限的晶体,体内的原子的这种理想表面作为半无限的晶体,体内的原子的位置及其结构的周期性,与原来无限的晶体完全一样。位置及其结构的周期性,与原来无限的晶体完全一样。 (图图5.1.1 理想表面结构示意图理想表面结构示意图 )图图5.1.1 理想表面结构示意图理想表面结构示意图 d 2、清洁表面、清洁表面 清洁表面是指清洁表面是指不存在任何吸附、催化反应、不存在任何吸附、催化反应、杂质扩散杂质扩散等物理化学效应的表面。这种
6、清洁等物理化学效应的表面。这种清洁表面的化学组成与体内相同,但周期结构可表面的化学组成与体内相同,但周期结构可以不同于体内。根据表面原子的排列,清洁以不同于体内。根据表面原子的排列,清洁表面又可分为表面又可分为台阶表面、弛豫表面、重构表台阶表面、弛豫表面、重构表面面等。等。 图图5.1.2 Pt有序原子台阶表面示意图有序原子台阶表面示意图(1)台阶表面)台阶表面 (图图5.1.2 ) 台阶表面不是一个平面,它是由有规则的或不台阶表面不是一个平面,它是由有规则的或不规则的台阶的表面所组成。规则的台阶的表面所组成。112111110(001)周期周期图图5.1.3 弛豫表面示意图弛豫表面示意图 (
7、2) 弛豫表面弛豫表面 (图图5.1.3,图,图5.1.4 ) 由于固相的三维周期性在固体表面处突然中由于固相的三维周期性在固体表面处突然中断,表面上原子产生的相对于正常位置的上、下断,表面上原子产生的相对于正常位置的上、下位移,称为位移,称为表面弛豫表面弛豫。图图5.1.4 LiF(001)弛豫弛豫表面示意图,表面示意图, Li F d0d弛豫表面的原因弛豫表面的原因 ?n表面上原子的配位情况发生变化表面上原子的配位情况发生变化n表面上原子附近的电荷分布有所改变表面上原子附近的电荷分布有所改变n表面原子所处的力场与体内原子也不同表面原子所处的力场与体内原子也不同。 为降低体系能量,就会产生弛
8、豫表面,即表面为降低体系能量,就会产生弛豫表面,即表面原子层的间距偏离体内原子间的间距,产生压原子层的间距偏离体内原子间的间距,产生压缩或膨胀(称为表面弛豫)。缩或膨胀(称为表面弛豫)。图图5.1.5 重构表面示意图重构表面示意图 (3)重构表面)重构表面(图图5.1.5 ) 重构是指表面原子层在水平方向上的周期重构是指表面原子层在水平方向上的周期性不同于体内,但垂直方向的层间距则与体性不同于体内,但垂直方向的层间距则与体内相同。内相同。d0d0asa 3、吸附表面、吸附表面 吸附表面有时也称界面。它是在清洁吸附表面有时也称界面。它是在清洁表面上有来自表面上有来自体内扩散到表面体内扩散到表面的
9、杂质和来的杂质和来自自表面周围空间吸附表面周围空间吸附在表面上的质点所构在表面上的质点所构成的表面。成的表面。 根据原子在基底上的吸附位置,一般根据原子在基底上的吸附位置,一般可分为四种吸附情况,即可分为四种吸附情况,即顶吸附、桥吸附、顶吸附、桥吸附、填充吸附和中心吸附填充吸附和中心吸附等。等。 4、固体的表面自由能和表面张力、固体的表面自由能和表面张力 两者的区别:两者的区别:1)表面自由能:每增加单位表面积时,体系)表面自由能:每增加单位表面积时,体系自由能的增量。单位:自由能的增量。单位:J/m2=N.m/m2=N/m2)表面张力是扩张表面单位长度所需要的力。)表面张力是扩张表面单位长度
10、所需要的力。单位:单位:N/m与液体相比:与液体相比:固体表面能和表面张力的特点固体表面能和表面张力的特点1)固体的表面自由能中包含了)固体的表面自由能中包含了弹性能弹性能。表面张力在数。表面张力在数值上不等于表面自由能;值上不等于表面自由能;2)固体的表面张力是各向异性的。)固体的表面张力是各向异性的。3)实际固体的表面绝大多数处于非平衡状态,决定固)实际固体的表面绝大多数处于非平衡状态,决定固体表面形态的主要是形成固体表面时的条件以及它所体表面形态的主要是形成固体表面时的条件以及它所经历的历史。经历的历史。4)固体的表面自由能和表面张力的测定非常困难。)固体的表面自由能和表面张力的测定非常
11、困难。 为什么固体的表面张力在数值上为什么固体的表面张力在数值上不等于表面自由能?不等于表面自由能? 固体中质点间相互作用力相对液体来说要强固体中质点间相互作用力相对液体来说要强很多,那么彼此间的相对运动要困难得多,在保很多,那么彼此间的相对运动要困难得多,在保持固体表面原子总数不变的条件下,通过弹性形持固体表面原子总数不变的条件下,通过弹性形变可使表面积增加,即变可使表面积增加,即固体的表面自由能中包含固体的表面自由能中包含了弹性能,因此,表面张力在数值上已不在等于了弹性能,因此,表面张力在数值上已不在等于表面自由能。表面自由能。 5、表面偏析、表面偏析 不论表面进行多么严格的清洁处理,总有
12、一不论表面进行多么严格的清洁处理,总有一些杂质由体内偏析到表面上来,从而使固体些杂质由体内偏析到表面上来,从而使固体表面组成与体内不同,称为表面组成与体内不同,称为表面偏析。表面偏析。 6、表面力场、表面力场 固体表面上的吸引作用,是固体的表面力场和被吸引质点的固体表面上的吸引作用,是固体的表面力场和被吸引质点的力场相互作用所产生的,这种相互作用力称为力场相互作用所产生的,这种相互作用力称为固体表面力固体表面力。剩剩余键力余键力 () 依性质不同,表面力可分为:依性质不同,表面力可分为: 1)化学力)化学力 2)分子引力)分子引力 (1)化学力:本质上是静电力。)化学力:本质上是静电力。 当固
13、体当固体吸附剂吸附剂利用表面质点的不饱和价键将利用表面质点的不饱和价键将吸附物吸附物吸附吸附到表面之后,吸附剂可能把它的电子完全给予吸附物,使吸到表面之后,吸附剂可能把它的电子完全给予吸附物,使吸附物变成负离子(例如吸附于大多数金属表面上的氧气);附物变成负离子(例如吸附于大多数金属表面上的氧气);或者,或者,吸附物吸附物把其电子完全给予把其电子完全给予吸附剂吸附剂,而变成吸附在固体,而变成吸附在固体表面上的正离子(如吸附在钨上的钠蒸气)。表面上的正离子(如吸附在钨上的钠蒸气)。 多数情况下吸附是介于上述二者之间,即多数情况下吸附是介于上述二者之间,即在固体吸附剂在固体吸附剂和吸附物之间共有电
14、子和吸附物之间共有电子,并且经常是不对称的。,并且经常是不对称的。 对于离子晶体,表面主要取决于对于离子晶体,表面主要取决于晶格能和极化作用晶格能和极化作用。 (2)分子引力,也称范德华)分子引力,也称范德华(Van der Walls)力,一般是力,一般是指固体表面与被吸附质点(例如气体分子)之间相互作指固体表面与被吸附质点(例如气体分子)之间相互作用力用力。主要来源于三种不同效应:。主要来源于三种不同效应: 1)定向作用定向作用。主要发生在极性分子(离子)之间。主要发生在极性分子(离子)之间。 2)诱导作用诱导作用。主要发生在极性分子与非极性分子之间。主要发生在极性分子与非极性分子之间。
15、3)色散作用色散作用。主要发生在非极性分子之间。主要发生在非极性分子之间。 (瞬时极化电偶极矩之间以及它对相邻分子的诱导作用所瞬时极化电偶极矩之间以及它对相邻分子的诱导作用所引起的相互作用效应,称为色散作用引起的相互作用效应,称为色散作用) 对不同物质,上述三种作用并非均等的。例如对于非极对不同物质,上述三种作用并非均等的。例如对于非极性分子,定向作用和诱导作用很小,可以忽略,主要是色散性分子,定向作用和诱导作用很小,可以忽略,主要是色散作用。作用。 5.1.2 固体的表面结构固体的表面结构 晶体表面结构(单晶)晶体表面结构(单晶) 粉体表面结构粉体表面结构 玻璃表面结构玻璃表面结构 固体表面
16、的几何结构固体表面的几何结构 1、晶体表面结构、晶体表面结构 表面力的存在使固体表面处于较高能量状态。但系统总会通表面力的存在使固体表面处于较高能量状态。但系统总会通过各种途径来降低这部分过剩的能量,这就导致表面质点的极化、过各种途径来降低这部分过剩的能量,这就导致表面质点的极化、变形、重排并引起原来晶格的畸变。对于不同结构的物质,其表变形、重排并引起原来晶格的畸变。对于不同结构的物质,其表面力的大小和影响不同,因而表面结构状态也会不同。面力的大小和影响不同,因而表面结构状态也会不同。 液体总是通过形成球形表面来降低系统的总能量;固体质液体总是通过形成球形表面来降低系统的总能量;固体质点不能自
17、由移动,是如何降低系统的表面能的?点不能自由移动,是如何降低系统的表面能的? 清洁表面:通过表面质点的极化、变形、重排来降低系统清洁表面:通过表面质点的极化、变形、重排来降低系统的表面能,结果导致了晶体表面附近晶格畸变,使表面结的表面能,结果导致了晶体表面附近晶格畸变,使表面结构与晶体内部有所不同。构与晶体内部有所不同。若是一般的固体表面,除了上述方式外,还通过吸附、表面偏析若是一般的固体表面,除了上述方式外,还通过吸附、表面偏析来降低表面能。来降低表面能。n威尔(威尔(Weyl)等人基于结晶化学原理,研究了晶等人基于结晶化学原理,研究了晶体表面结构,认为晶体质点间的相互作用,键强体表面结构,
18、认为晶体质点间的相互作用,键强是影响表面结构的重要因素,提出了晶体的表面是影响表面结构的重要因素,提出了晶体的表面双电层模型,如双电层模型,如图图5.1.6、5.1.7所示。所示。 图图5.1.6 离子晶体表面的电子云变形和离子重排离子晶体表面的电子云变形和离子重排图图5.1.7 NaCl表面层中表面层中Na+向里;向里; Cl-向外移动并形成双电层向外移动并形成双电层 晶体内部晶体内部晶体表面晶体表面0.281nm0.266nm0.020nm2.86nmn表面双电层建立过程中,负离子向外侧移动,表面双电层建立过程中,负离子向外侧移动,正离子向内侧移动,这种位移是否仅仅局限在正离子向内侧移动,
19、这种位移是否仅仅局限在最外层和次外层面网间?最外层和次外层面网间?nNO 负离子总是向外移动;正离子向内负离子总是向外移动;正离子向内-向外交替位移。向外交替位移。 结果正、负离子间的键强从外向内,交替增强和减弱,结果正、负离子间的键强从外向内,交替增强和减弱,离子间距离离子间距离 也是交替缩短和增长,即表面键强数值比较也是交替缩短和增长,即表面键强数值比较分散。分散。 实验依据:真空中分解实验依据:真空中分解MgCO3后得到的后得到的MgO颗粒互相排斥。颗粒互相排斥。 可以预期,对于其它由可以预期,对于其它由半径大的负离子与半径小的正离子半径大的负离子与半径小的正离子组成的化合物,组成的化合
20、物,特别是金属氧化物如特别是金属氧化物如Al2O3、SiO2等也会有相应效应。而产生这种变化的程度等也会有相应效应。而产生这种变化的程度主要取决于离子极化性能。主要取决于离子极化性能。例子:例子:PbI2表面能最小(表面能最小(130尔格厘米尔格厘米2),),PbF2次之(次之(900尔格厘米尔格厘米2),),CaF2最大(最大(2500尔格厘米尔格厘米2)。为什么?)。为什么? 这正因为这正因为Pb+与与I-都具有大的极化性能所致。当用极化性能较小的都具有大的极化性能所致。当用极化性能较小的Ca2+和和F-依次置换依次置换PbI2中的中的Pb+和和I-离子时,相应的表面能和硬度迅速增加。离子
21、时,相应的表面能和硬度迅速增加。 极化性能大,表面能小,相应的表面双电层厚度将减小。极化性能大,表面能小,相应的表面双电层厚度将减小。 2、粉体表面结构、粉体表面结构 粉体在制备过程中,由于反复地破碎,不断形成新的粉体在制备过程中,由于反复地破碎,不断形成新的表面。表面层离子的极化变形和重排使表面晶格畸变,有表面。表面层离子的极化变形和重排使表面晶格畸变,有序性降低。因此,随着粒子的微细化,比表面增大,表面序性降低。因此,随着粒子的微细化,比表面增大,表面结构的有序程度受到愈来愈强烈的扰乱并不断向颗粒深部结构的有序程度受到愈来愈强烈的扰乱并不断向颗粒深部扩展,最后使份体表面结构趋于无定形化。扩
22、展,最后使份体表面结构趋于无定形化。 基于基于X射线、热分析和其它物理化学方法对粉体表射线、热分析和其它物理化学方法对粉体表面结构所作的研究测定,提出两种不同的模型。面结构所作的研究测定,提出两种不同的模型。 一种认为粉体表面层是无定形结构;一种认为粉体表面层是无定形结构; 另一种认为粉体表面层是粒度极小的微晶结构。另一种认为粉体表面层是粒度极小的微晶结构。 粉体表面层是无定形结构粉体表面层是无定形结构 的实验验证的实验验证 石英的相变吸热峰面积随石英的相变吸热峰面积随SiO2粒度的变化:粒度的变化: 石英密度值随粒度的变化:石英密度值随粒度的变化:当当0.5mm时,密度为时,密度为2.65,
23、与块体石英一致;,与块体石英一致;0.5mm时,粒径减小,密度迅速减少,逐渐接近无定形石英的时,粒径减小,密度迅速减少,逐渐接近无定形石英的密度密度2.2203。粒度粒度/微米微米相变吸热峰面积相变吸热峰面积 相对大颗粒石英的相转变量相对大颗粒石英的相转变量粒度减少到粒度减少到5-10 明显减小明显减小发生相转变的石英量显著减少发生相转变的石英量显著减少约约1.3继续减小继续减小仅仅50%石英发生相转变石英发生相转变HF处理上述石英处理上述石英粉末,重复上述实验粉末,重复上述实验增加增加100%石英发生相转变石英发生相转变 粉体表面层是微晶结构的实验验证:粉体表面层是微晶结构的实验验证: 对粉
24、体进行更精确的对粉体进行更精确的X射线和电子衍射研究发现,其射线和电子衍射研究发现,其X射线谱线不仅强度减弱而且宽度明显变宽。因此认为粉体射线谱线不仅强度减弱而且宽度明显变宽。因此认为粉体表面并非无定形态,而是覆盖了一层尺寸极小的微晶体,表面并非无定形态,而是覆盖了一层尺寸极小的微晶体,即表面是呈微晶化状态。由于微晶体的晶格是严重畸变的,即表面是呈微晶化状态。由于微晶体的晶格是严重畸变的,晶格常数不同于正常值而且十分分散,这才使其晶格常数不同于正常值而且十分分散,这才使其X射线谱射线谱线明显变宽。线明显变宽。 对鳞石英粉体表面的易溶层进行的对鳞石英粉体表面的易溶层进行的X射线测定表明,射线测定
25、表明,它并不是无定形质;从润湿热测定中也发现其表面层存在它并不是无定形质;从润湿热测定中也发现其表面层存在有硅醇基团。有硅醇基团。 3、玻璃表面结构、玻璃表面结构 表面张力的存在,使玻璃表面组成与内部显著不同表面张力的存在,使玻璃表面组成与内部显著不同 在熔体转变为玻璃体的过程中,为了保持最小表面在熔体转变为玻璃体的过程中,为了保持最小表面能,各成分将按其对表面自由能的贡献能力自发地转移能,各成分将按其对表面自由能的贡献能力自发地转移和扩散。和扩散。 在玻璃成型和退火过程中,碱、氟等易挥发组分自在玻璃成型和退火过程中,碱、氟等易挥发组分自表面挥发损失。表面挥发损失。(举例玻璃瓶退火时的举例玻璃
26、瓶退火时的 “白霜白霜”现象)现象)因此,即使是新鲜的玻璃表面,其化学成分、结构因此,即使是新鲜的玻璃表面,其化学成分、结构也会不同于内部。这种差异可以从表面折射率、化学稳也会不同于内部。这种差异可以从表面折射率、化学稳定性、结晶倾向以及强度等性质的观测结果得到证实。定性、结晶倾向以及强度等性质的观测结果得到证实。 玻璃中的极化离子会对表面结构和性质产生影响。玻璃中的极化离子会对表面结构和性质产生影响。 对于含有较高极化性能的离子如对于含有较高极化性能的离子如Pb2+、Sn2+、Sb3+、Cd2+等的玻璃,其表面结构和性质会明显受到这些离子在等的玻璃,其表面结构和性质会明显受到这些离子在表面的
27、排列取向状况的影响。这种作用本质上也是极化问表面的排列取向状况的影响。这种作用本质上也是极化问题。题。如铅玻璃,由于铅原子最外层有如铅玻璃,由于铅原子最外层有4个价电子个价电子(6S26P2),当形成当形成Pb2+时,因最外层尚有两个电子,对接近于它的时,因最外层尚有两个电子,对接近于它的O2-产生斥力,致使产生斥力,致使Pb2+的作用电场不对称,的作用电场不对称,Pb2+以以2Pb2+ Pb4+ + Pb0方式被极化变形。方式被极化变形。高铅玻璃中均存在这种四方锥体,它形成一种螺旋形的链状结构。在玻高铅玻璃中均存在这种四方锥体,它形成一种螺旋形的链状结构。在玻璃中与硅氧四面体璃中与硅氧四面体
28、SiO4形成不对称键,形成共顶或共边连接,也参加形成不对称键,形成共顶或共边连接,也参加网络形式,然而形成的网络较之网络形式,然而形成的网络较之SiO2的网络要开放得多。的网络要开放得多。图图 正方形正方形PbOPbO原子间距示意图原子间距示意图图图 PbOPbO结构结构玻璃中玻璃中PbO含量可以很高含量可以很高, Why? 正是正是PbO这种结构上的特殊性造成了这种结构上的特殊性造成了PbO-SiO2系统系统有很宽的玻璃形成区有很宽的玻璃形成区(摩尔分数接近摩尔分数接近80的的PbO也可也可和和SiO2形成玻璃形成玻璃),并且因,并且因Pb0的引入造成的易熔、高的引入造成的易熔、高电阻、低介
29、电损耗、高折射率、高色散等一系列特性。电阻、低介电损耗、高折射率、高色散等一系列特性。根据根据PbO的不对称结构特点,的不对称结构特点,在铅玻璃中存在所谓在铅玻璃中存在所谓“金属桥金属桥的形式的形式(以以“1/2Pb4+一一1/2Pb0”表示表示),从,从而给制造金红玻璃及和金属的封接等工艺带来令瞩目而给制造金红玻璃及和金属的封接等工艺带来令瞩目的优点。的优点。在常温时,表面极化离子的电矩通常是朝内部在常温时,表面极化离子的电矩通常是朝内部取向以降低其表面能。因此常温下铅玻璃具有特别取向以降低其表面能。因此常温下铅玻璃具有特别低的吸湿性。但随温度升高,热运动破坏了表面极低的吸湿性。但随温度升高,热运动破坏了表面极化离子的定向排列,故铅玻璃呈现正的表面张力温化离子的定向排列,故铅玻璃呈现正的表面张力温度系数。度系数。不同极化性能的离子进入玻璃表面层后,对表不同极化性能的离子进入玻璃表面层后,对表面结构和性质会产生不同的影响。面结构和性质会产生不同的影响。 4、固体表面的几何结构、固体表面的几何结构 实验观测表明,固体实际表面是不规则实验观测表明,固体实际表面是不规则而粗糙的,存在着无数台阶、裂缝和凹凸不
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论