快递公司送货策略数学模型_数学建模论文_第1页
快递公司送货策略数学模型_数学建模论文_第2页
快递公司送货策略数学模型_数学建模论文_第3页
快递公司送货策略数学模型_数学建模论文_第4页
已阅读5页,还剩41页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、快递公司送货策略模型 摘要 本文是关于快递公司送货策略的优化设计问题,即在给定送货地点和给定设计规划的前提下,确定所需的业务员人数,每个业务员的行程路线,总的运行公里数及费用最省的策略。 在问题一中,在考虑业务员工作时间及载重限制的两方面因素的情况下,寻求路程最短的路线优化组合,建立TSP(旅行商问题)模型,采用最近邻算法,以原点(配送中心)为起点,通过距离矩阵依次寻找距离最近的未服务送货点,运用MATLAB软件求解出最优的路线组合。并根据遗传算法的思想,提出了模型优化的方案,得到了一个相对较优的策略,模型结果为:共需6名送货员,所需总路程为536千米,所需总时间为26.44小时。 对于问题二

2、,以业务员酬金最少为目标,选取最优路线时应尽量避免快件回送现象,同样建立TSP(旅行商问题)模型,依次寻找费用最小的点的组合,由此寻找最优路线组合,优化模型结果为:总路程是620千米,所花总时间是31.43小时,共需要送货员8人,所需最少费用为16189.9元。 对于问题三,业务员工作时间增加2小时,以寻找业务员人数最小的路线分配为目标,并尽量保证时间和路程的相对均衡。由于业务员工作时间对总的运行路线影响较小,所以只需对业务员数量和各业务员送货线路进行调整,调整后将业务员人数减少到4人。 关键字:TSP(旅行商问题) 最近邻法 交叉算子 1 一、问题重述 目前,快递行业正蓬勃发展,为我们的生活

3、带来更多方便。一般地,所有快件到达某地后,先集中存放在总部,然后由业务员分别进行派送;对于快递公司,为了保证快件能够在指定的时间内送达目的地,必须有足够的业务员进行送货,但是,太多的业务员意味着更多的派送费用。 假定所有快件在早上7点钟到达,早上9点钟开始派送,要求于当天17点之前必须派送完毕,每个业务员每天平均工作时间不超过6小时,在每个送货点停留的时间为10分钟,途中速度为25km/h,每次出发最多能带25千克的重量。为了计算方便,我们将快件一律用重量来衡量,平均每天收到总重量为184.5千克,公司总部位于坐标原点处(如图2),每个送货点的位置和快件重量见下表,并且假设送货运行路线均为平行

4、于坐标轴的折线。 (1)请你运用有关数学建模的知识,给该公司提供一个合理的送货策略(即需要多少业务员,每个业务员的运行线路,以及总的运行公里数); (2)如果业务员携带快件时的速度是20km/h,获得酬金3元/kmkg;而不携带快件时的速度是30km/h,酬金2元/km,请为公司设计一个费用最省的策略; (3)如果可以延长业务员的工作时间到8小时,公司的送货策略将有何变化, 二、模型假设 1.假设每个快递员由派送中心出发,可连续工作6小时,中途不休息,且送货完毕后必须返回派送中心报到; 2.假设每个快递员独立工作,送货过程相互不影响; 3.假设每个送货点只能由一个业务员送货且只需经过一次,路线

5、确定后不再更改; 4.若一个业务员需运送多条路线,中间返回总部取快件所花时间不计; 5.假设快递员送货的公路均平行于所建立的坐标轴; 6.假设快递员在送货途中不出现堵车现象,且没有其他的事情耽搁; 2 三、符号说明 符号 说明 i,1,2n) 任意一条路线(Li j,A任意一条路线上具体某一送货点(1,2m) ij 总的运行公里数 C 每一条最优送货路线的公里数 ci 每条路线上两个送货点之间的距离 S,Si(j,1)ij 快件全部送完所花总时间 T v业务员运送途中的速度 每一条送货路线的时间 ti 总的送货点重量之和 K 每一条路线送货的重量 k i每一条路线上每一个送货点的重量 kij任

6、意一位送货员 Ri 总的送货需要多少钱 P 送货员携带快件时的酬金 pA送货员未携带快件时的酬金 p B业务员携带快件时途中的运行速度 v 1业务员未携带快件时途中的运行速度 v 2三角距离函数 G(a,b,c) 3 四、问题分析 本题属于资源分配优化问题,要求根据资源限制和约束条件来建立一个合理的邮件派送模型。 在问题一中,要求我们根据时间和重量等方面的约束条件,建立合理的邮件派送路径,使得运行线路最短且使用尽可能少的业务员。分析题目条件知道影响模型的主要因素有:1.业务员每天工作不可超过6小时;2.业务员每次出发至多可带25千克的快件;3.公司需在9:00-17:00间将184.5千克的货

7、物分送到杂乱无序的30个送货点。因此,我们需要建立最短送货路径的数学模型,首先,应用Dijkstra算法求解出坐标原点(公司总部)到各送货点的最短路距离矩阵D1;利用TSP模型中的最近邻法确定满足条件的8条最短路径并依据各线路送货时间进行送货人员的分配;利用顺序插入交叉算子对模型一提出优化方案。 问题二中,题目增加了业务员空载和重载的酬金以及速度的条件,要求公司设计一个费用最省的策略。因业务员重载的费用高于空载费用,而模型一仅给出路线最短,不能满足问题二需求,所以对问题二提出费用优化方案,即根据费用计算方式,运用最近邻法寻找离原点(配送中心)费用最少的点,依次类推,找出费用最省的路径组合并计算

8、出所需费用;根据路径组合和运送时间,在满足问题一约束条件的基础上重新分配送货人员。 问题三中,将业务员的工作时间延长到每天8小时,求解公司的运送策略将如何改变。业务员工作时间的调整对于总的运行路线的影响并不大,只需对业务员的数量已及各业务员的安排路线进行调整即可。 五、模型建立与求解 5.1问题一模型建立与求解 5.1.2模型的建立 在问题一中,要求在每个业务员每天平均工作时间不超过6小时且必须从早上9点开始到当日17点(8小时内)全部派送完毕;平均每天送货总重量为184.5千克,每人每次出发最多可带25千克。如果将两点之间的路线距离附为这两点横纵坐标之和,比如,A(x,y) 这两点,则次两点

9、间的距离为: A(x,y)jjjiii(5.1.1) S,|x,x|,|y,y|ijijij用此方法结合MATLAB求出任意两配送点的距离矩阵如下(图5.1): 4 图5.1 距离矩阵D 该问题为规划模型,根据题意,结合距离矩阵D,设定目标函数为: nm-1(5.1.2) minC,(S,S),(S,S),,i(j1)ijimi1,i1j1即为送货总路线的最短路程。 其约束条件为: 1、每条线路上个需求点需求量之和不超过业务员的最大负荷量: mk,k (5.1.3) ,iji,1j2、每个业务员所有配送路径来回的时间不能超过业务员一天最长的工作时间: m-11 (5.1.4) (S,S),(S

10、,S),v,(m,1),t,i(j1)ijimi1i,j1,63、每一条送货路线上送货点数不超过总送货点数: (5.1.5) 0,m,314、所有点都能够被配送到: nk,K (5.1.6) ,ii,15 5、总的送货路线不超过每人送一个一个地点: (5.1.7) 0,n,30综上:最终模型建立如下 nm-1(5.1.8) minC,(S,S),(S,S),,i(j1)ijimi1,i1j1mk,25,ijj,1m-11(S,S),(S,S),v,(m,1),t,i(j1)ijimi1i,j1,6n(5.1.9) Stk,K,i,1i0,m,310,n,30t为方便快件公司进行人员分配和路线选

11、择,需计算每天路径的送货时间及派送完iT所有快件所花总时间 m1 (5.1.10) t,(S,S),(S,S),v,(m,1),ii(j1)ijimi1,j1,6T,t,t,.,t (5.1.11) 12n5.1.2利用最近邻法求最短送货路径组合 经过分析,本题属于业务员路径问题,即VRP问题,从本质上说,TSP(旅行商问题)是VRP的基本问题,因此,本文以TSP思想中的一种最近邻算法为根据,结合题目约束条件,利用MATLAB求解出业务员工作的最短路径。 TSP问题是典型的组合优化问题,问题要求求得一条遍历所有城市的最短路径,是一个易于描述但难于处理的NP-HARD问题。TSP问题在交通运输、

12、计算机网络、电路设计以及物流配送等领域内有着广泛的应用,目前,其主要算法主要有遗传算法、贪婪算法、模拟退火法及最近邻法等诸多方法。最近邻算法是TSP近似算法中最简单直观的一种,其主要思想为:任取一点作为出发点,每次取最近的一个点加入到最优解中,一直到所有点皆已进入解中。 A首先根据距离矩阵D找到距离送货中心最近的一个未服务送货点,则分配一条1cAA路线,再找出距离最近的另外一个未服务的送货点,对每一个服务店同理依1126 次寻找出,同时,每经过一个服务点对该服务点邮件的重量进行累A,A.Ak34iij加,即,直到此路线c中所经过的所有送货点的邮件累k,k,k,.,kiiiiij12k,25计重

13、量,则以上包含的点的组合即为该路线的路径。 i依据上述原理,运用MATLAB软件(程序详见附件一)可得到8条最短路径,由此分析配送路线及分配表如下表: 表一:模型一路线分配表 路线i 路径 总时间(h) 总路程(km) 总重量(kg) 注1 0-1-3-4-5 32 24.0 1.95 :02 0-2-6-7-8-9-23 88 24.5 4.52 为3 0-10-11-12 46 23.3 2.34 配4 0-16-17-20-14-13 60 23.5 送3.23 中5 0-22-21-15-19 68 24.2 3.39 心 6 0-18-24-25 68 24.7 3.22 将7 0-

14、27-26 76 22.0 3.37 以8 0-29-28-30 98 18.3 4.42 上合计 536 184.5 26.44 模型求解得到的路线射线图可用网络图象表达,如下(图5.2): 图5.2 模型一路线射线图 则每条路径的具体路线如下(图5.3): 7 图5.3 模型一路线图 在保证所有快件准时送达各个送货点的情况下,合理安排路线及送货员,使得所需送货员的人数最少,线路及人员安排情况如下表: 表二:模型一人员分配表 送货员R 1 2 3 4 5 6 合计 路线L 2 4 6 8 1、5 3、7 - 总时间(h) 4.52 3.23 3.22 4.42 5.34 5.71 26.44

15、 总重量(kg) 24.5 23.5 24.7 18.3 48.2 45.3 184.5 总路程(km) 88 60 68 98 100 122 536 综上,可得该模型所构建的路线共需6名送货员,快件完全送完所需总路程为536千米,所需总时间为26.44小时。 L该模型较简单直观,但也存在不足。在路径选择时,当其中某一点A被路线选iij定后,该点将不作为接下来的任意一条路线的备选送货点,每一条路线均为当前条件下的最优路线,将所有路线组合后不一定是整体送货点的最优路线,即局部最优并非整体最优。为提高工作效率,使所走总路程更短、时间更少,我们对上述模型进行了优化。 5.1.3利用顺序插入交叉算子

16、(OIC)优化模型一 8 顺序插入交叉算子是针对TSP问题的特点,在遗传算法的交叉运算过程中设计的三角距离差函数作为评价标准,运用贪婪策略思想,提出的一种新的交叉算子,该算子有效的利用了局部信息,并且能很好的继承父代优秀的基因。顺序插入交叉算子的基本思想是:对于两个待交叉的染色体,将一个作为基本染色体,另一个作为参考染色体,按照在参考染色体中的送货点间的邻接顺序,利用三角距离差函数作为评价标准,运用贪婪策略思想,逐步改变基本染色体的编码顺序,从而使经过交叉得到的两个子代染色体的适应度最高。 优化思想:利用顺序插入交叉算子,我们将模型一中每一条进行染色体编码定义,AA如,将上述染色体看成一个环,

17、染色体的下一个送货点是。L(A,A,.,A)i1i12iAAA定义,设有3个送货点,,定义三角距离函数G(a,b,c)如下: abc(5.1.12) G(a,b,c),S(a,b),S(b,c)-S(a,c)A其中,S(x,y)表示送货点到送货点的距离。 Axy设待交叉的双亲为和,设计交叉L(A,A,.,A)L(B,B,.,B)A12mB12n算子其求解步骤如下: LLL1.将父体作为基本染色体,父体作为参考染色体,在中随机找到一个参ABB考城市; BjA,BLA,B2.在染色体中找到城市,然后对函数值进行比较,若: ijAmi,1G(A,A,A),G(A,A,A)ji,1j,1m,1mm,1

18、 (5.1.13) LLA则染色体保持不变,否则,在染色体中删除城市,然后再A与A之间插AAmjj,1,L入B,得到新染色体 Aj,1L3.依次在参考染色体中取参考城市,重复步骤2,直至生成子代个体。 BLL4.再将作为基本染色体,将作为参考染色体,重复上述步骤直至得到最优BA搭配方案。 5.2问题二模型建立与求解 5.2.1模型的建立 问题二要求根据题给空载和重载的速度与价格条件,优化送货路线使得送货费用最P小。根据条件,任意一条送货路线的费用可分为两部分组成: i重载情况下到达最后一个送货点 9 通过该路线将快件从原点送到该路线上任意一点所需要的路程为: Aijj,1(s,s),i(z,1

19、)izz,1则所需要的费用为 j,1pk(s,s),(,1)Aiiziz,1z由此得到重载情况下到达最后一个送货点的费用为 j,1m,1(pk(s,s),Aiiziz(,1)jz,1,12.空载情况下由最后一个送货点返回配送中心: P,p(s,s)Biji1返回综合1、2两步,得到任意一条送货路线的费用为 ,j1,m1P,(pk(s,s),p(s,s),,iAii(z1)izBimi1,jz11n则将货物送达完毕的费用为 minP,P,i,1i可设定目标函数为: j,1nm,1(5.2.1) minP,(pk(s,s),p(s,s),AiiizBimi(z,1)1i,1j,1z,1上式即为送货

20、总费用的最省的线路。 1、每条线路上的需求点需求量之和不超过业务员的最大负荷量,即: m(5.2.2) k,25,ijj,12、每个业务员所有配送路径来回的时间不能超过业务员一天最长的工作时间: ,m11(5.2.3) (s,s),v,(s,s),v,(m,1),t,ij(1),ij1imi12i,j163、所有点都能够被配送到: nk,K (5.2.4) ,ii,14、每一条送货路线上送货点数不超过总送货点数: (5.2.5) 0,m,3110 5、总的送货路线不超过每人送一个地点: (5.2.6) 0,n,30综上:最终模型建立如下 j,1nm,1minP,(pk(s,s),p(s,s).

21、 (5.2.7) ,AiiizBimi(z,1)1i,1j,1z,1mk,25 ,ijj,1,m11(5.2.8) (s,s),v,(s,s),v,(m,1),t,ij(1),ij1imi12ij1,6nk,Kst,i,1i0,m,310,n,30t为方便快件公司进行人员分配和路线选择,需计算每条路径的送货时间和派送完iTP所有快件所花总时间,以及总的费用 5.2.2模型的求解 根据题意,本题目属于求解费用最小的组合优化模型,同样利用问题一种的最近邻法,结合送货时间及重量的约束条件,利用路线费用计算公式来寻找费用最小的优化模型。 Ac首先找到距离送货中心送货费用最少的一个未服务送货点,则分配一

22、条路线,11AA再找出距离送货费用最小的另外一个未服务的送货点,对每一个服务店同理依次12寻找出A,A.Ak,同时,每经过一个服务点对该服务点邮件的重量进行累加,34iijc即,直到此路线中所经过的所有送货点的邮件累计重k,k,k,.,kiiiiij12k,25量,则以上包含的点的组合即为该路线的路径。 i依据上述原理,运用MATLAB软件(程序详见附件)可得到9条最短路径,由此分析配送路线及分配表如下表: 11 表三:模型二路线分配图 路线i 路径 总时间总路程总重量总费用 (h) (km) (kg) 1 0-9-8-14-20-16-5-6-0 3.83 56 23.1000 2234.5

23、 2 0-11-10-22-21-0 3.52 66 23.6000 2205.6 3 0-2-7-13-23-0 3.67 72 23.6000 1189.8 4 0-1-3-4-15-0 3.10 58 22.9000 858.5 5 0-26-0 3.25 74 10.0000 1184 6 0-12-27-0 3.17 68 24.7000 2056 7 0-30-28-29-0 4.72 98 18.3000 2955.1 8 0-19-25-0 2.75 58 17.4000 1525 9 0-17-18-24-0 3.43 70 20.9000 1981.4 合计 31.43 6

24、20 184.500 16189.9 每条路径的路线图如下(图5.4)所示: 图5.4 模型二路线图 12 根据送货路线分配表,合理安排送货员如下表: 表四:模型二业务员分配表 送货员R 1 2 3 4 5 6 7 8 合计 路线L 1 2 3 4,8 5 6 7 9 - 总时间(h) 3.83 3.52 3.67 5.85 3.25 3.17 4.72 3.43 31.43 总重量(kg) 23.1000 23.6000 23.6000 40.3000 10.0000 24.7000 18.3000 20.9000 184.500 总路程(km) 56 66 72 116 74 68 98

25、70 620 总费用(元) 2234.5 2234.5 2234.5 2042.5 2056 2056 2056 2056 综上,模型二所建立的优化模型的总路程是620千米,所花总时间是31.43小时,共需要送货员8人,所需最少费用为16189.9元 5.3问题三模型建立与求解 5.3.1模型的建立与求解 由于业务员的日常工作时间由6小时增加到8小时,因此,需要根据每天路径的运ti对模型一的路线重新分配业务员。模型三人员分配表如下: 送时间表五:模型三业务员分配表 送货员R 1 2 3 4 合计 路线L 1,8 2,3 4,5 6,7 - 总时间(h) 6.37 6.86 6.62 6.59

26、26(44 总重量(kg) 42.3 47.8 47.7 46.7 184.5 总路程(km) 130 134 128 144 536 综上,业务员工作时间调整后,共需业务员4人。 六、模型的评价与改进 6.1模型的评价 6.1.1模型的优点 在模型建立的过程当中,我们将具体问题抽象成一个数学目标函数,一方面在结果上具体分配出了送货策略,另一方面模型的整个求解过程简单清晰,便于理解和推广。 在求解分析中将有序路径问题引入到矩阵中,并很好的融合了TSP模型中求最短路径的思想设计出自己的算法,模型的建立简单明确,具有针对性,模型的计算结果经过仿真测试,具有较高的准确度。最终得出了较为合理的送货策略

27、并对模型一提出了基于遗传算法思想的优化理论。 6.1.2模型的缺点 该模型主要采用TSP(旅行商问题)思想中的最近邻算法,仅在现有条件内实现了局部最优,并没有达到整体最优的效果,优化方案模型不成熟。 该模型选择配送线路不能对客户的需求进行灵活多变的处理。由于线代的消费者的需求倾向于个性化,引起企业的生产、销售和配送也愈来愈倾向于小批量、多品种、多批次,而该模型更适合需求稳定的环境。 13 参考文献 1 孙海雷,刘琼荪,胡上尉。TSP问题的顺序插入交叉算子J。计算机工程与应用,2007,43(8)。 。计算机应用与软件,2009,26(4)。 2 张辉。TSP问题的算法与应用的研究J附录 附录1

28、.模型求解相关matlab程序 关键字: tsp模型 邻近算法 状态选择 模型求解的相关数据文件 文件说明 数据类文件: Point.xls 文件存入的是以送货配发点为原点所建成的坐标体系上的各个点的相对坐标集合 st.xls 文件存入的内容为各个配送点的所需货物的重量以及货物送达的状态 Dis2.xls 文件存入的内容为各个配送点的距离矩阵表 gres.xls 由问题模型一结果构成的路线矩阵 Dis3.xls 由距离矩阵和单价表构成的距离单价矩阵(用于问题二的模型) 程序类文件 getallDis.m文件(工具类程序文件) 表现:function s = getallDis() 14 主要功

29、能:求出各个送货点的距离举证,并存入dis.txt 源代码: function s = getallDis() %UNTITLED1 Summary of this function goes here % Detailed explanation goes here % author:manager x=xlsread(point.xls,b3:b33); y=xlsread(point.xls,c3:c33); for i=1:31 for j=1:31 a(i,j)=abs(x(i)-x(j)+abs(y(i)-y(j); end end file=fopen(dis.txt,w); f

30、or i=1:31 for j=1:31 % fprintf(file,); fprintf(file,%d,a(i,j); if mod(j,31)=0 fprintf(file,n); end end end fclose(file); getDis.m文件(工具类程序文件) 表现:function k = getDis(i) 主要功能:获取返还距离; 源代码: function k = getDis(i) %UNTITLED1 Summary of this function goes here % Detailed explanation goes here if i=1 k=xlsr

31、ead(dis2.xls,a1:a1);end if i=2 k=xlsread(dis2.xls,a2:a2);end if i=3 k=xlsread(dis2.xls,a3:a3);end if i=4 k=xlsread(dis2.xls,a4:a4);end if i=5 k=xlsread(dis2.xls,a5:a5);end if i=6 k=xlsread(dis2.xls,a6:a6);end if i=7 k=xlsread(dis2.xls,a7:a7);end if i=8 k=xlsread(dis2.xls,a8:a8);end if i=9 k=xlsread(

32、dis2.xls,a9:a9);end if i=10 k=xlsread(dis2.xls,a10:a10);end if i=11 k=xlsread(dis2.xls,a11:a11);end 15 if i=12 k=xlsread(dis2.xls,a12:a12);end if i=13 k=xlsread(dis2.xls,a13:a13);end if i=14 k=xlsread(dis2.xls,a14:a14);end if i=15 k=xlsread(dis2.xls,a15:a15);end if i=16 k=xlsread(dis2.xls,a16:a16);e

33、nd if i=17 k=xlsread(dis2.xls,a17:a17);end if i=18 k=xlsread(dis2.xls,a18:a18);end if i=19 k=xlsread(dis2.xls,a19:a19);end if i=20 k=xlsread(dis2.xls,a20:a20);end if i=21 k=xlsread(dis2.xls,a21:a21);end if i=22 k=xlsread(dis2.xls,a22:a22);end if i=23 k=xlsread(dis2.xls,a23:a23);end if i=24 k=xlsread

34、(dis2.xls,a24:a24);end if i=25 k=xlsread(dis2.xls,a25:a25);end if i=26 k=xlsread(dis2.xls,a26:a26);end if i=27 k=xlsread(dis2.xls,a27:a27);end if i=28 k=xlsread(dis2.xls,a28:a28);end if i=29 k=xlsread(dis2.xls,a29:a29);end if i=30 k=xlsread(dis2.xls,a30:a30);end if i=31 k=xlsread(dis2.xls,a31:a31);e

35、nd caldis.m文件(工具类程序文件) 表现:function ans = caldis(s,m,n) 主要功能:计算矩阵的整体路径 源代码: function ans = caldis(s,m,n) %UNTITLED1 Summary of this function goes here % Detailed explanation goes here dis=; tempdis=0; for i=1:m tempdis=0; for j=1:n-1 m=j+1; if s(i,m)0 tempdis=tempdis+GgetbothDis(s(i,j),s(i,m); dismy=

36、GgetbothDis(s(i,j),s(i,m); tempdis else break; end end if s(i,j+1)=0 tempdis=tempdis+GgetbothDis(s(i,j),s(i,1) else 16 tempdis=tempdis+GgetbothDis(s(i,j+1),s(i,1) end dis(i)=tempdis; end ans=dis; gets.m文件(工具类程序文件) 表现:function n = gets(i) 主要功能:获取i到各点的距离矩阵 源代码: function n = gets(i) %获取i到个点的各个点的距离举证 if

37、 i=1 s=xlsread(dis2.xls,a1:a31); end if i=2 s=xlsread(dis2.xls,b1:b31); end if i=3 s=xlsread(dis2.xls,c1:c31); end if i=4 s=xlsread(dis2.xls,d1:d31); end if i=5 s=xlsread(dis2.xls,e1:e31); end if i=6 s=xlsread(dis2.xls,f1:f31); end if i=7 s=xlsread(dis2.xls,g1:g31); end if i=8 s=xlsread(dis2.xls,h1:

38、h31); end if i=9 s=xlsread(dis2.xls,i1:i31); end if i=10 s=xlsread(dis2.xls,j1:j31); end if i=11 s=xlsread(dis2.xls,k1:k31); end if i=12 s=xlsread(dis2.xls,l1:l31); end if i=13 s=xlsread(dis2.xls,m1:m31); end if i=14 s=xlsread(dis2.xls,n1:n31); end if i=15 s=xlsread(dis2.xls,o1:o31); end if i=16 s=x

39、lsread(dis2.xls,p1:p31); end if i=17 s=xlsread(dis2.xls,q1:q31); end if i=18 s=xlsread(dis2.xls,r1:r31); end if i=19 s=xlsread(dis2.xls,s1:s31); end if i=20 s=xlsread(dis2.xls,t1:t31); end if i=21 s=xlsread(dis2.xls,u1:u31); end if i=22 s=xlsread(dis2.xls,v1:v31); end if i=23 s=xlsread(dis2.xls,w1:w

40、31); end if i=24 s=xlsread(dis2.xls,x1:x31); end if i=25 s=xlsread(dis2.xls,y1:y31); end if i=26 s=xlsread(dis2.xls,z1:z31); end if i=27 s=xlsread(dis2.xls,aa1:aa31); end if i=28 s=xlsread(dis2.xls,ab1:ab31); end if i=29 s=xlsread(dis2.xls,ac1:ac31); end if i=30 s=xlsread(dis2.xls,ad1:ad31); end if

41、i=31 s=xlsread(dis2.xls,ae1:ae31); end CloseDis.m文件 (问题一基本模型核心文件) 17 表现:function n = closeDis(i,st,status) 主要功能:在选择状态和货物重量的限制下,求出与参数i点距离最近的点n并返回; 源代码: %用于计算和i点距离最近的点,并返回点的下标 function n = closeDis(i,st,status) %UNTITLED1 Summary of this function goes here % Detailed explanation goes here % i表示要寻找的点 %

42、 st表示当前累计重量 % status:所有货物点的接受状态 %step1:寻找与i点距离最近的点且累计重量不超过25kg %获得所有货物点的坐标和标号 x=xlsread(point.xls,b3:b33); y=xlsread(point.xls,c3:c33); %获取所有货物点的重量 k=xlsread(st.xls,b1:b31); a=xlsread(st.xls,a1:a31); %获取i到个点的各个点的距离举证 if i=1 s=0,5,6,9,11,8,14,16,15,12,14,20,20,21,22,21,18,24,28,27,28,27,21,36,34,29,3

43、7,34,44,41,46; end if i=2 s=5,0,5,4,6,9,9,11,10,7,13,15,15,16,17,16,15,19,23,22,23,22,20,31,29,24,32,29,39,36,41; end if i=3 s=6,5,0,5,5,4,8,10,9,12,18,18,14,15,16,15,12,18,22,21,22,21,25,30,28,23,31,28,38,35,40; end if i=4 s=9,4,5,0,4,9,9,7,6,7,13,13,11,12,13,12,15,15,19,18,19,18,20,27,25,20,28,25,

44、35,32,37; end if i=5 s=11,6,5,4,0,5,5,5,6,11,17,17,11,10,11,10,11,13,17,16,17,20,24,25,23,18,26,23,33,30,35; end if i=6 s=8,9,4,9,5,0,6,8,11,16,22,22,16,13,14,13,10,16,20,19,20,25,29,28,26,21,29,26,36,33,38; end if i=7 s=14,9,8,9,5,6,0,6,11,16,22,22,16,11,8,7,6,10,14,13,18,25,29,26,20,15,23,20,30,27

45、,32; end 18 if i=8 s=16,11,10,7,5,8,6,0,5,10,16,16,10,5,6,5,12,10,12,11,12,19,23,20,18,13,21,18,28,25,30; end if i=9 s=15,10,9,6,6,11,11,5,0,5,11,11,5,6,7,10,17,15,13,12,13,14,18,21,19,14,22,19,29,26,31; end if i=10 s=12,7,12,7,11,16,16,10,5,0,6,8,8,9,10,15,22,20,16,15,16,15,13,24,22,17,25,22,32,29,

46、34; end if i=11 s=14,13,18,13,17,22,22,16,11,6,0,6,6,11,16,21,28,26,20,13,14,13,7,22,20,15,23,20,30,27,32; end if i=12 s=20,15,18,13,17,22,22,16,11,8,6,0,6,11,16,21,28,26,20,11,8,7,7,16,18,13,17,14,24,21,26; end if i=13 s=20,15,14,11,11,16,16,10,5,8,6,6,0,5,10,15,22,20,14,7,8,9,13,16,14,9,17,14,24,2

47、1,26; end if i=14 s=21,16,15,12,10,13,11,5,6,9,11,11,5,0,5,10,17,15,9,6,7,14,18,15,13,8,16,13,23,20,25; end if i=15 s=22,17,16,13,11,14,8,6,7,10,16,16,10,5,0,5,12,10,6,5,12,19,23,20,12,7,15,12,22,19,24; end if i=16 s=21,16,15,12,10,13,7,5,10,15,21,21,15,10,5,0,7,5,7,10,17,24,28,25,13,8,16,15,23,20,2

48、5; end if i=17 s=18,15,12,15,11,10,6,12,17,22,28,28,22,17,12,7,0,6,10,17,24,31,35,32,16,15,19,22,26,23,28; end if i=18 s=24,19,18,15,13,16,10,10,15,20,26,26,20,15,10,5,6,0,6,15,22,29,33,30,10,13,15,20,20,21,22; end if i=19 s=28,23,22,19,17,20,14,12,13,16,20,20,14,9,6,7,10,6,0,9,16,23,27,24,6,7,9,14,

49、16,15,18; end if i=20 s=27,22,21,18,16,19,13,11,12,15,13,11,7,6,5,10,17,15,9,0,7,14,18,15,7,2,10,7,17,14,19; end if i=21 s=28,23,22,19,17,20,18,12,13,16,14,8,8,7,12,17,24,22,16,7,0,7,11,8,14,9,9,6,16,13,18; end if i=22 19 s=27,22,21,18,20,25,25,19,14,15,13,7,9,14,19,24,31,29,23,14,7,0,6,9,21,16,14,9

50、,17,14,19; end if i=23 s=21,20,25,20,24,29,29,23,18,13,7,7,13,18,23,28,35,33,27,18,11,6,0,15,25,20,18,13,23,20,25; end if i=24 s=36,31,30,27,25,28,26,20,21,24,22,16,16,15,20,25,32,30,24,15,8,9,15,0,22,17,15,10,14,9,10; end if i=25 s=34,29,28,25,23,26,20,18,19,22,20,18,14,13,12,13,16,10,6,7,14,21,25,

51、22,0,5,7,12,10,13,14; end if i=26 s=29,24,23,20,18,21,15,13,14,17,15,13,9,8,7,8,15,13,7,2,9,16,20,17,5,0,8,7,15,12,17; end if i=27 s=37,32,31,28,26,29,23,21,22,25,23,17,17,16,15,16,19,15,9,10,9,14,18,15,7,8,0,5,7,6,9; end if i=28 s=34,29,28,25,23,26,20,18,19,22,20,14,14,13,12,15,22,20,14,7,6,9,13,10

52、,12,7,5,0,10,7,12; end if i=29 s=44,39,38,35,33,36,30,28,29,32,30,24,24,23,22,23,26,20,16,17,16,17,23,14,10,15,7,10,0,5,6; end if i=30 s=41,36,35,32,30,33,27,25,26,29,27,21,21,20,19,20,23,21,15,14,13,14,20,9,13,12,6,7,5,0,5; end if i=31 s=46,41,40,37,35,38,32,30,31,34,32,26,26,25,24,25,28,22,18,19,1

53、8,19,25,10,14,17,9,12,6,5,0; end %找到最小值,在正确的状态下寻找最小值 minnum,num=min(s); while status(num)=1|(k(num)+st)25 s(num)=inf; minnum,num=min(s); if minnum=inf break; end end if minnum=inf n=0; else n=num; end showResult.m文件 (问题一基本模型核心文件) 表现:function ans = showResult() 20 主要功能:实现tsp最优路径选择算法,并显示路径矩阵和重量矩阵 源代码:

54、 function ans = showResult() %UNTITLED1 Summary of this function goes here % Detailed explanation goes here % tsp模型 用邻点法进行推算并显示结果 %得到初始状态表 status=xlsread(st.xls,c1:c31); %获得所有货物点 a=1 2 4 5 6 3 7 8 14 10 9 13 11 17 18 21 15 12 23 22 16 20 26 25 19 27 28 30 31; %获取所有货点的重量 k=xlsread(st.xls,b1:b31); %初始化统计量 st=0; %累计重量 v=1; u=1; %路线下标 allst(v,u)=st; %总路线 res(v,u)=1; %路线下标 len=0; %单条路径 alllen(v,u)=0; %总路径矩阵 eixtstatus=min(status); %迭代结束标志 %迭代开始 m=1; %判断最优路径寻找条件 while eixtstatus

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论