版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、二、第二类换元法二、第二类换元法第二节一、第一类换元法一、第一类换元法机动 目录 上页 下页 前往 终了 换元积分法 第四章 第二类换元法第二类换元法第一类换元法第一类换元法xxxfd)()(uufd)(根本思绪根本思绪 机动 目录 上页 下页 前往 终了 设, )()(ufuF)(xu可导,xxxfd)()(CxF)()(d)(xuuuf)()(xuCuF)(dxFxxxfd)()(那么有一、第一类换元法一、第一类换元法定理定理1.,)(有原函数设uf,)(可导xu那么有换元公式xxxfd)()(uufd)()(xu)(d)(xxf(也称配元法即xxxfd)()(, 凑微分法凑微分法)机动
2、目录 上页 下页 前往 终了 例例1. 求求).1(d)(mxbxam解解: 令令,bxau那么,ddxau 故原式原式 =muuad1a1Cumm1111)() 1(1mbxamaC注注: 当当1m时bxaxdCbxaaln1机动 目录 上页 下页 前往 终了 22)(1d1axxa例例2. 求求.d22xax解解:22dxax,axu 令那么xaud1d21uuda1Cuaarctan1Caxa)arctan(1想到公式21duuCu arctan)(ax机动 目录 上页 下页 前往 终了 例例3. 求求).0(d22axax21duu想到Cu arcsin解解:2)(1daxax)(d)
3、(xxf(直接配元)xxxfd)()(2)(1)(daxaxCax arcsin22dxax机动 目录 上页 下页 前往 终了 例例4. 求求.dtanxx解解:xxxdcossinxxcoscosdCx cosln?dcotxxxxxsindcosCx sinlnxxsinsindxxdtan机动 目录 上页 下页 前往 终了 类似Caxaxaln21例例5. 求求.d22axx解解:221ax )(axax)()(axaxa21)11(21axaxa 原式原式 =a21axxaxxdda21axax)(da21ax lnax lnCaxax)( d机动 目录 上页 下页 前往 终了 常用的
4、几种配元方式常用的几种配元方式: xbxafd)() 1 ( )(bxaf)(dbxa a1xxxfnnd)()2(1)(nxfnxdn1xxxfnd1)()3()(nxfnxdn1nx1万能凑幂法xxxfdcos)(sin)4()(sin xfxsindxxxfdsin)(cos)5()(cosxfxcosd机动 目录 上页 下页 前往 终了 xxxfdsec)(tan)6(2)(tan xfxtandxeefxxd)()7()(xefxedxxxfd1)(ln)8()(ln xfxlnd例例6. 求求.)ln21 (dxxxxln21xlnd解解: 原式原式 =xln2121)ln21 (
5、dxCx ln21ln21机动 目录 上页 下页 前往 终了 例例7. 求求.d3xxex解解: 原式原式 =xexd23)3d(323xexCex332例例8. 求求.dsec6xx解解: 原式原式 =xdxx222sec) 1(tanxtandxxxtand) 1tan2(tan24x5tan51x3tan32xtanC机动 目录 上页 下页 前往 终了 例例9. 求求.1dxex解法解法1xex1dxeeexxxd1)1 (xdxxee1)1 (dxCex)1ln(解法解法2 xex1dxeexxd1xxee1)1 (dCex)1ln()1(ln)1ln(xxxeee两法结果一样机动 目
6、录 上页 下页 前往 终了 xxsin11sin1121例例10. 求求.dsecxx解法解法1 xxdsecxxxdcoscos2xx2sin1sindxsindxsin1ln21Cxsin1lnCxxsin1sin1ln21机动 目录 上页 下页 前往 终了 xxtansec解法解法 2 xxdsecxxdsecxxtansec )tan(secxxxxxxxxdtansectansecsec2)tan(secdxxCxxtansecln同样可证xxdcscCxxcotcscln或xxdcscCx2tanln(P196 例16 )机动 目录 上页 下页 前往 终了 222d)(2123xa
7、x例例11. 求求.d)(23223xaxx解解: 原式原式 =23)(22ax22dxx21222)(aax21)(2122ax)(d22ax 23)(2222axa)(d22ax 22ax 222axaC机动 目录 上页 下页 前往 终了 )2cos2cos21 (241xx 例例12 . 求求.dcos4xx解解:224)(coscosxx 2)22cos1(x)2cos21 (24cos141xx)4cos2cos2(212341xxxxdcos4xxxd)4cos2cos2(21234141xd23)2d(2cosxx)4(d4cos81xxx83x2sin41x4sin321C机动
8、 目录 上页 下页 前往 终了 例例13. 求求.d3cossin22xxx解解:xx3cossin22221)2sin4(sinxx xxxx2sin2sin4sin24sin24141241)8cos1 (81xxx2cos2sin2)4cos1 (81x原式 =xd41)8d(8cos641xx)2(sind2sin221xx)4d(4cos321xxx41x8sin641x2sin361x4sin321C机动 目录 上页 下页 前往 终了 xxexex111xexexxxdd xexxd) 1(例例14. 求求.d)1 (1xexxxx解解: 原式原式=xexxxxd)1 () 1(x
9、exe)1 (1xxxexe)(d)111(xxxexexex)1 (1xxxxxexexexe)(dxxexexlnxex1lnCCexxxx1lnln机动 目录 上页 下页 前往 终了 分析分析: 例例15. 求求.d)()()()()(32xxfxfxfxfxf 解解: 原式原式)()(xfxfxxfxfxfxfxfd)()()(1)()(2 xxfxfxfxfd)()()()(22 Cxfxf2)()(21)()(d(xfxf机动 目录 上页 下页 前往 终了 )()(xfxf小结小结常用简化技巧:(1) 分项积分:(2) 降低幂次:(3) 一致函数: 利用三角公式 ; 配元方法(4)
10、 巧妙换元或配元等xx22cossin1; )2cos1 (sin212xx; )2cos1 (cos212xx万能凑幂法xxxfnnd)(1nnnxxfd)(1xxxfnd1)(nxnnxxfnd)(11机动 目录 上页 下页 前往 终了 利用积化和差; 分式分项;利用倍角公式 , 如思索与练习思索与练习1. 以下各题求积方法有何不同? xx4d) 1 (24d)2(xxxxxd4)3(2xxxd4)4(2224d)5(xx24d)6(xxxxx4)4(d22221)(1)d(xx22214)4(dxxxxd441241xx2121xd2)2(4x)2(dx机动 目录 上页 下页 前往 终了
11、 xxxd) 1(1102. 求求.) 1(d10 xxx提示提示:法法1法法2法法3 ) 1(d10 xxx10)x ) 1(d10 xxx) 1(1010 xx ) 1(d10 xxx)1 (d1011xxx101x10d x10110(x10dx101作业 目录 上页 下页 前往 终了 二、第二类换元法二、第二类换元法机动 目录 上页 下页 前往 终了 第一类换元法处理的问题难求易求xxxfd)()(uufd)()(xu假设所求积分xxxfd)()(易求,那么得第二类换元积分法 .难求,uufd)(CxF)()()()(ttft定理定理2 . 设设)(tx是单调可导函数 , 且,0)(
12、t)()(ttf具有原函数 ,)(1d)()(d)(xttttfxxf.)()(1的反函数是其中txxt证证:的原函数为设)()(ttf, )(t令 )()(1xxF那么)(xFtddxtdd)()(ttf)(1t)(xfxxfd)(Cx)(1Ct )(1xt)(1d)()(xttttf机动 目录 上页 下页 前往 终了 那么有换元公式例例16. 求求. )0(d22axxa解解: 令令, ),(,sin22ttax那么taaxa22222sintacosttaxdcosd 原式tacosttadcosttadcos22Ca242sin2ttax22xa taxarcsinCxax222122
13、atttcossin22sin2axaxa22机动 目录 上页 下页 前往 终了 例例17. 求求. )0(d22aaxx解解: 令令, ),(,tan22ttax那么22222tanataaxtasecttaxdsecd2 原式 ta2sectasectdttdsec1tanseclnCttax22ax tln22ax a)ln(1aCCCaxx22ln机动 目录 上页 下页 前往 终了 xa1C例例18. 求求. )0(d22aaxx解解:,时当ax 令, ),0(,sec2ttax那么22222secataaxtatanxdtttadtansec 原式td ttatansectatant
14、tdsec1tanseclnCttax22ax t1 lnCCaxx22ln)ln(1aCC机动 目录 上页 下页 前往 终了 22ax axa,时当ax令,ux,au 则于是22daxx22dauuCaxx22ln22daxx,时ax 122lnCauu122lnCaxx1222lnCaxxa)ln2(1aCCCaxx22ln机动 目录 上页 下页 前往 终了 阐明阐明:被积函数含有22ax 时, 除采用1shch22tt采用双曲代换taxsh消去根式 , 所得结果一致 . ( 参考书上 P204-P205 )taxch或22ax 或机动 目录 上页 下页 前往 终了 三角代换外, 还可利用
15、公式原式21) 1(22ta221a例例19. 求求.d422xxxa解解: 令令,1tx 那么txtdd21原式ttd12tttad) 1(2122,0时当x42112tta Cata2223) 1(23当 x 0 时, 类似可得同样结果 .Cxaxa32223)(23) 1(d22ta机动 目录 上页 下页 前往 终了 小结小结:1. 第二类换元法常见类型第二类换元法常见类型: ,d),() 1 (xbaxxfn令nbxat,d),()2(xxfndxcbxa令ndxcbxat,d),()3(22xxaxf令taxsin或taxcos,d),()4(22xxaxf令taxtan或taxsh
16、,d),()5(22xaxxf令taxsec或taxch机动 目录 上页 下页 前往 终了 第四节讲xxdtan)16(xxdcot)17(xxdsec)18(xxdcsc)19(Cx coslnCx sinlnCxx tanseclnCxxcotcscln机动 目录 上页 下页 前往 终了 2. 常用根本积分公式的补充 (P203)(7) 分母中因子次数较高时, 可试用倒代换 ,d)()6(xafx令xat xxad1)20(22xxad1)22(22xaxd1)23(22xaxd1)21(22Caxaarctan1Caxaxaln21CaxarcsinCaxx)ln(22xaxd1)24(
17、22Caxx22ln机动 目录 上页 下页 前往 终了 .32d2 xxx解解: 原式原式xxd2) 1(122)2() 1( dx21arctan21xC(P203 公式 (20) )机动 目录 上页 下页 前往 终了 例例20. 求求例例21. 求求.94d2xxI解解:223)2()2(d21xxICxx942ln212(P203 公式 (23) )例例22. 求求.1d2xxx解解: 原式原式 =22)()()(d21x(P203 公式 (22) )2521xCx512arcsin机动 目录 上页 下页 前往 终了 例例23. 求求.1d2xex解解: 原式原式xxee21dCexar
18、csin(P203 公式 (22) )例例24. 求求.d222 axxx解解: 令令,1tx 得原式ttatd1221) 1(d2122222tataaCtaa11222Cxaax222机动 目录 上页 下页 前往 终了 ttttd)1(12132例例25. 求求.2) 1(d23xxxx解解: 原式原式1) 1() 1(d23xxx令tx11tttd122tttd11)1 (22tt d12ttd112tttarcsin121221Ct arcsinCxxxx1121) 1(221arcsin22例16 目录 上页 下页 前往 终了 思索与练习思索与练习1. 以下积分应如何换元才使积分简便 ?xxxd1) 1 (25xex1d)2( )2(d)3(7xxx令21xt令xet1令xt1机动 目录 上页 下页 前往 终了 2. 知知,1d)(25Cxxxfx求.d)(xxf解解: 两边求导两边求导, 得得)(5xfx,12xx那么1dd)(24xxxxxf)1(xt 令231dttt222d121ttt1(1)1 (d)1 (212221tt)1 (d)1 (212221tt23)1 (312tCt21)1 (2(代回原变量代回原变量) 机动 目录 上页 下页 前往 终了 作
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 大型广告牌安装吊车租赁合同
- 电视剧制作团队制片人招聘协议
- 一卡通系统订货合同
- 建设工程施工合同地热能开发
- 企业内部网站管理办法
- 水电站土地开发合同
- 电子产品生产废标条件研究
- 酒店维护工程合同
- 矿山安全质量管理办法
- 企业产品演示员操作手册
- 网络设备安装调试作业指导书
- 福建省泉州市2024-2025学年高一上学期11月期中物理试题(无答案)
- 为犯罪嫌疑人提供法律咨询委托协议范例
- 内蒙古包头市昆都仑区第九中学2024-2025学年八年级上学期期中考试道德与法治试题(含答案)
- 软件平台施工组织方案
- 经济师中级考试《经济基础知识》历年真题卷及答案解析
- 国家开放大学专科《应用写作(汉语)》一平台在线形考(形考任务一至七)试题及答案
- 2024年安徽合肥轨道交通公司招聘笔试参考题库含答案解析
- 骨盆骨折PPT完整版
- 中小学德育工作指南考核试题及答案
- GB/T 3077-2015合金结构钢
评论
0/150
提交评论