



下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、南昌大亨NANCHANGUNIVERSITY课程名称:学术英语题目:AStudyofEnergyEfficientCloudComputingPoweredby_WirelessEnergyTransfer英语班级:理工1615班专业/年级:物联网工程161班姓名/学号:(47L二零一八年六月AStudyofEnergyEfficientCloudComputingPoweredbyWirelessEnergyTransferAStudyofEnergyEf?cientMobileCloudComputingPoweredbyWirelessEnergyTransferAbstractAchi
2、evinglongbatterylivesorevenself-sustainabilityhasbeenalongstandingchallengefordesigningmobiledevices.Thisstudypresentsanovelsolutionthatseamlesslyintegratestwotechnologies,mobilecloudcomputingandmicrowavepowertransfer(MPT),toenablecomputationinpassivelow-complexitydevicessuchassensorsandwearablecomp
3、utingdevices.Specifically,consideringasingle-usersystem,abasestation(BS)eithertransferspowertooroffloadscomputationfromamobiletothecloud;themobileusesharvestedenergytocomputegivendataeitherlocallyorbyoffloading.AframeworkforenergyefficientcomputingisproposedthatcomprisesasetofpoliciesforcontrollingC
4、PUcyclesforthemodeoflocalcomputing,timedivisionbetweenMPTandoffloadingfortheothermodeofoffloading,andmodeselection.GiventheCPU-cyclestatisticsinformationandchannelstateinformation(CSI),thepoliciesaimatmaximizingtheprobabilityofsuccessfullycomputinggivendata,calledcomputingprobability,undertheenergyh
5、arvestinganddeadlineconstraints.Furthermore,thisstudyrevealsthatthetwosimplesolutionstoachievetheobjecttosupportcomputationloadallocationovermultiplechannelrealizations,whichfurtherincreasesthecomputingprobability.Last,thetwokindsofmodessuggestthatthefeasibilityofwirelesslypoweredmobilecloudcomputin
6、gandthegainofitsoptimalcontrol.Andthefutureaspecttostudyissimplytobeanswer.Keywords:wirelesspowertransfer;energyharvestingcommunications;mobilecloudcomputing;energyefficientcomputingAStudyofEnergyEfficientCloudComputingPoweredbyWirelessEnergyTransferIntroductionMobilecloudcomputing(MCC)asanemergingc
7、omputingparadigmintegratescloudcomputingandmobilecomputingtoenhancethecomputationperformanceofmobiledevices.TheobjectiveofMCCistoextendpowerfulcomputingcapabilityoftheresource-richcloudstotheresource-constrainedmobiledevices(e.g.,laptop,tabletandsmartphone)soastoreducecomputationtime,conservelocalre
8、sources,especiallybattery,andextendstoragecapacity.Toachievethisobjective,MCCneedstotransferresource-intensivecomputationsfrommobiledevicestoclouds,referredtoascomputationoffloading.Thecoreofcomputationoffloadingistodecideonwhichcomputationtasksshouldbeexecutedonthemobiledeviceoronthecloud,andhowtos
9、chedulelocalandcloudresourcetoimplementtaskoffloading.TheexplosivegrowthofInternetofThings(IOT)andmobilecommunicationisleadingtothedeploymentoftensofbillionsofcloud-basedmobilesensorsandwearablecomputingdevicesinnearfuture(Huang&Chae,2010).Prolongingtheirbatterylivesandenhancingtheircomputingcap
10、abilitiesaretwokeydesignchallenges.Theycanbetackledbytwopromisingtechnologies:microwavepowertransfer(MPT)forpoweringthemobilescomputation-intensivetasksfromthemobilestothecloudandmobilecomputationoffloading(MCO).Twotechnologiesareseamlesslyintegratedinthecurrentworktodevelopanoveldesignframeworkforr
11、ealizingwirelesslypoweredmobilecloudcomputingunderthecriterionofmaximizingtheprobabilityofsuccessfullycomputinggivendata,calledcomputingprobability.TheframeworkisfeasiblesinceMPThasbeenproveninvariousexperimentsforpoweringsmalldevicessuchassensorsorevensmall-scaleairplanesandhelicopters.Furthermore,
12、sensorsandwearablecomputingdevicestargetedintheframeworkareexpectedtobeconnectedbythecloud-basedIOTinthefuture,providingasuitableplatformforrealizingMCO.MaterialsMCOhasbeenanactiveresearchareaincomputersciencewhereresearchhasfocusedondesigningmobile-cloudsystemsandsoftwarearchitectures,virtualmachin
13、emigrationdesigninthecloudandcodepartitioningtechniquesinthemobilesforreducingtheenergyconsumptionandimprovingthecomputingperformanceofmobiles.Nevertheless,implementationofMCOrequiresdatatransmissionandmessagepassingoverwirelesschannels,incurringtransmissionpowerconsumption.Theexistenceofsuchatradeo
14、ffhasmotivatedcross-disciplinaryresearchonjointlydesigningMCOandadaptivetransmissionalgorithmstomaximizethemobileenergysavings.Astochasticcontrolalgorithmwasproposedforadaptingtheoffloadedcomponentsofanapplicationtoatime-varyingwirelesschannel.Furthermore,multiusercomputationoffloadinginamulti-cells
15、ystemwasexploredbyShinohara(2014),wheretheradioandcomputationalresourceswerejointlyallocatedformaximizingtheenergysavingsunderthelatencyconstraints.AccordingtoSwan(2012),thethreshold-basedoffloadingpolicywasderivedforthesystemwithintermittentconnectivitybetweenthemobileandcloud.Lastly,theCPU-cyclefr
16、equenciesarejointlycontrolledwithMCOgivenamoreskilledandincreasinglyappropriateAStudyofEnergyEfficientCloudComputingPoweredbyWirelessEnergyTransferwirelesschannel.TheframeworkisfurtherdevelopedinthecurrentworktoincludethenewfeatureofMPT(Kostaetal.,2012).Thisintroducesseveralnewdesignchallenges.Among
17、others,thealgorithmicdesignoflocalcomputingandoffloadingbecomesmorecomplexundertheenergyharvestingconstraintduetoMPT,whichpreventsenergyconsumptionfromexceedingtheamountofharvestedenergyateverytimeinstant.AnotherchallengeisthatMPTandoffloadingtimesharethemobileantennaandthetimedivisionhastobeoptimiz
18、ed.Nowthetechnologyisbeingfurtherdevelopedtopowerwirelesscommunications.Thishasresultedintheemergenceofanactivefieldcalledsimultaneouswirelessinformationandpowertransfer(SWIPT).TheMPTtechnologyhasbeendevelopedforpoint-to-pointhighpowertransmissioninthepastdecades(Brown,1984).Furthermore,existingwire
19、lessnetworkssuchascognitiveradioandcellularnetworkshavebeenredesignedtofeatureMPT.MostpriorworkonSWIPTaimsatoptimizingcommunicationtechniquestomaximizetheMPTefficiencyandsystemthroughput.Incontrast,thecurrentworkfocusesonoptimizingthelocalcomputingandoffloadingunderadifferentdesigncriterionofmaximum
20、computingprobability(Huang&Lau,2014).MethodsandResultsConsiderasingle-usersystemcomprisingonemulti-antennabasestation(BS)usingtransmit/receivebeamformingfortransferringpowertoasingle-antennamobileorrelayingoffloadeddatafromthemobiletothecloud.Tocomputeafixedamountofdata,themobileoperatesinoneoft
21、hetwoavailablemodes:Localcomputingandoffloading:inthemodeoflocalcomputing,MPToccurssimultaneouslyascomputingbasedonthecontrollableCPU-cyclefrequencies.Nevertheless,inthemodeofoffloading,thegivencomputationdurationisadaptivelypartitionedforseparateMPTandoffloadingsincetheysharethemobileantenna(Shinoh
22、ara,2014).AssumethatthemobilehastheknowledgeofstatisticsinformationofCPUcyclesandchannelstateinformation(CSI).Theindividualmodesaswellasmodeselectionareoptimizedformaximizingthecomputingprobabilityundertheenergyharvestinganddeadlineconstraints.Fortractability,themetricistransformedintoequivalentones
23、,namelyaveragemobileenergyconsumptionandmobileenergysavings,forthemodesoflocalcomputingandoffloading,respectively.Comparedwiththepriorwork,thecurrentworkintegratesMPTwiththemobilecloudcomputing,whichintroducesnewtheoreticalchallenges.Inparticular,theenergyharvestingconstraintarisingfromMPTmakestheop
24、timizationproblemforlocalcomputingnon-convex.Totacklethechallenge,theconvexrelaxationtechniqueisappliedwithoutcompromisingtheoptimalityofthesolution.ItisshowninthesequelthatthelocalcomputingpolicyisaspecialcaseofthecurrentworkwherethetransferredpowerissufficientlyhighbySwan(2012).Furthermore,thecase
25、ofdynamicchannelformobilecloudcomputingisexplored.Approximationmethodsareusedforderivingthesimpleandclose-to-optimalpolicies.Mobilemodeselection:Theaboveresultsarecombinedtoselectthemobilemodeformaximizingthecomputingprobability.Givenfeasiblecomputinginbothmodes,theonlyoneAStudyofEnergyEfficientClou
26、dComputingPoweredbyWirelessEnergyTransferyieldingthelargerenergysavingsispreferredandtheselectioncriterionisderivedintermsofthresholdsontheBStransmissionpoweraswellasthedeadlineforcomputing(Huangetal.,2012).Optimaldataallocationforadynamicchannel:Last,theaboveresultsareextendedtothecaseofadynamiccha
27、nnel,modeledasindependentandidenticallydistributed.blockfading,andnon-causalCSIatthemobile(acquiredfrome.g.,channelprediction).Theproblemofoptimizinganindividualmobilemode(localcomputingoroffloading)isformulatedbasedonthemaster-and-slavemodelusingthesamemetricasthefixed-channelcounterpart(Kumar&
28、Liu,2013).ConclusionWirelessandmobilecomputingtechnologiesprovidemorepossibilitiesforaccessingservicesconveniently.Mobiledeviceswillbeimprovedintermsofpower,CPU,andstorage.Mobilecloudcomputinghasemergedasanewparadigmandextensionofcloudcomputing.Bytwokindsofavailablemodes,wecanpurelyknowoftheEnergyEf
29、?cientMobileCloudComputing.ThroughmystudyfortheMobileCloudComputing,wearehereexposingtwosimplesolutionstosolvethisproblem.Althoughmyresearchisprettybasic,itstillbenefittheprocessofthedevelopmentformobilecloudcomputingandhowtomakeitenergyefficient.Webelievethatexploringotheralternatives,suchasintrodu
30、cingamiddlewarebasedarchitectureusinganoptimizingoffloadingalgorithm,couldhelpbettertheavailableframeworksandprovidemoreefficientandmoreflexiblesolutionstotheMCCusers.Weknowthatthekindoftechnologywillplayanincreasingimportantroleinourdailylifeinthefuture.Bythisstudy,webetterknowofthenewestdevelopmen
31、tinoursciencearea.Thisworkcanbeextendedtoseveralinterestingdirections:First,full-duplextransmissioncanbeimplementedinthepro-posedsystemtosupportsimultaneousMPTandcomputationoffloadingtoimprovethepowertransferefficiency.Second,thecurrentworkfocusingonasingle-computingtaskcanbegeneralizedtothescenario
32、ofcomputingamulti-taskprogram,whichinvolvesprogrampartitioningandsimultaneouslocalcomputingandoffloading.Last,itisinterestingtoextendthecurrentdesignforsingle-usermobilecloudcomputingsystemtothemultiusersystemthatrequiresjointdesignofradioandcomputationalresourceallocationformobilecloudcomputing.ReferencesBrown,W.(1984).Thehistoryo
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年广东碧桂园职业学院单招职业倾向性测试题库新版
- 教师职业道德与学前教育政策法规 教案 3. 教师职业道德实践
- 2024年12月秦皇岛卢龙经济开发区管理委员会选聘事业单位工作人员5人笔试历年典型考题(历年真题考点)解题思路附带答案详解
- 2025年湖南大众传媒职业技术学院单招职业倾向性测试题库汇编
- 第四单元 自然界的水(大单元教学设计)2024-2025学年九年级化学上册同步备课系列(人教版2024)
- 第12课 民族大团结(教学设计)八年级历史下册同步备课系列(统编版)
- 第六单元 科技文化与社会生活(单元教学设计)-2023-2024学年八年级历史下册新课标核心素养一站式同步教与学
- 儿科护理学习题库含参考答案
- 第四单元《 参考活动2 研制便携式羽毛球辅助训练器》教学设计 -2024-2025学年初中综合实践活动苏少版八年级上册
- 足球脚内侧踢地滚球 教学设计-2023-2024学年高二上学期体育与健康人教版必修第一册
- 《安全原理》习题库及参考答案
- 氮气能耗估算表
- 分离工程授课教案
- 《HSK标准教程3》第10课
- 人民医院能源托管服务项目可研技术方案书
- 系统上线验收合格证书
- ABO血型鉴定及交叉配血
- 消防水箱安装施工方案
- 【重庆长安汽车公司绩效管理现状、问题及优化对策(7600字论文)】
- 孔轴的极限偏差表
- 热轧钢板和钢带尺寸允许偏差
评论
0/150
提交评论