与三角形有关的线段时教案_第1页
与三角形有关的线段时教案_第2页
与三角形有关的线段时教案_第3页
与三角形有关的线段时教案_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、11.1 与三角形的关的线段(第2课时)教学目标知识与技能1.了解三角形的角平分线、高、中线并能在具体情境中作出它们;2.经历折纸,画图等实践过程认识三角形的高、中线与角平分线.毛3.会用工具准确画出三角形的高、中线与角平分线, 通过画图了解三角形的三条高(及所在直线)交于一点,三角形的三条中线,三条角平分线等都交于一点.过程与方法经历画、折等实践操作活动过程,发展学生的空间观念,推理能力及创新精神。学会用数学知识解决实际问题能力,发展应用和自主探究意识,并培养学生的动手实践能力。情感态度价值观通过对问题的解决,使学生有成就感,培养学生的合作精神,树立学好数学的信心。教学重点了解三角形的高、中

2、线与角平分线的概念, 会用工具准确画出三角形的高、中线与角平分线.教学难点探究三角形的三条高线、角平分线、三条中线交于一点的过程及钝角三角形高的画法.教学准备教师:圆规、三角形纸片、三角。教学过程(师生活动)设计理念提出问题1什么叫角平分线?如何画一个角的平分线?2已知A、B分别是直线l上和直线l外一点,分别过点A、点B画直线l的垂线。·B·lA3三角形按角分类可分为哪几种?回忆旧知识,通过操作拓展知识,体验高的性质。探究新知1.三角形的高的概念 从三角形的一个顶点向它的对边所在的直线作垂线,顶点和垂足之间的线段叫做三角形的高表示方法: 1.AD是ABC的BC上的高线.2.

3、ADBC于D.3.ADB=ADC=90°.问题:三角形的高与垂线有何区别和联系?2.三角形的中线的概念1、 如图,教师给出一个准备好的三角形纸片,把B,C重合对折,折痕与BC交于点D.问题:(1)D点有什么特殊性? (2)连接线段AD,AD把ABC分成的两个三角形的面积有何关系? (3)请归纳线段AD的特点 并用语言描述中线定义三角形中,连结一个顶点和它对边中的线段叫做三角形的中线 表示方法:1.AE是ABC的BC上的中线.2.BE=EC=BC.问题:你认为一个三角形有几条中线?并分别作出来,你有什么发现?结论:三条定义:三角形的三条中线的交点叫做三角形的重心.3.三角形的角平分线的

4、概念如图,教师再给出一个三角形纸片,对折,使AC与AB所在直线重合,折痕与BC交于D. 问题:(1)通过这个操作你认为AD有什么位置特点? (2)请给出三角形角平分线的定义 三角形一个内角的平分线与它的对边相交,这个角顶点与交点之间的线段叫做三角形角的平分线表示方法:1.AM是ABC的BAC的平分线.2.1=2=BAC.思考:三角形的高、中线和角平分线是代表线段还是代表射线或直线? 三角形的高、中线和角平分线都代表线段, 这些线段的一个端点是三角形的一个顶点,另一个端点在这个顶点的对边上.通过画、折等实践操作活动理解三角形的角平分线概念,并培养学生动手操作能力,自主探索、合作交流,发现三角形的

5、三条角平分线交于一点的规律让学生能感知并有一种意识去动手实践,主动探究巩固新知问题:1、在练习本上画出三角形,并在这个三角形中画出它的三条高.( 如果他们所画的是锐角三角形,接着提出在直角三角形的三条高在哪里?钝角三角形的三条高在那里?)观察这三条高所在的直线的位置有何关系? 三角形的三条高交于一点,锐角三角形三条高交点在直角三角形内,直角三角形三条高线交点在直角三角形顶点,而钝角三角形的三条高的交点在三角形的外部. 2、在练习本上画一个三角形,并在这三角形中画出它的三条角平分线,观察这三条角平分线的位置有何关系? 无论是锐角三角形还是直角三角形或钝角三角形, 它们的三条角平分线都在三角形内,并且交于一点. 3、你认为“三线”定义中,高与线段垂线、三角形角平分线与角的平分线、中线与线段中点有何异同?课堂练习1、 AD是ABC的角平分线,那么BAD= = 2、 AE是ABC的中线,那么BE= = BC3、 如图3,在ABC中BAC=60度,B=45度,AD是BAC的角平分线,求ADB的度数。4.如图5,D、E分别是ABC的边AC、BC的中点,下列说法正确吗?(1) DE是BDC的中线。(2) BD是ABC的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论