版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、 我们在前面学过,在平面直角坐标系中,两我们在前面学过,在平面直角坐标系中,两点确定一条直线,一点和倾斜角也能确定一条直点确定一条直线,一点和倾斜角也能确定一条直线线在平面直角坐标系中,如何确定一个圆呢?在平面直角坐标系中,如何确定一个圆呢?AMrxOy 当圆心位置与半径大小确定后,圆就唯一确定当圆心位置与半径大小确定后,圆就唯一确定了因此一个圆最基本要素是了因此一个圆最基本要素是圆心和半径圆心和半径xOyA(a,b)Mr(x, y) 如图,在直角坐标系中,圆心(点)如图,在直角坐标系中,圆心(点)A的位置用的位置用坐标坐标 (a,b) 表示,半径表示,半径r的大小等于圆上任意点的大小等于圆上
2、任意点M(x, y)与圆心与圆心A (a,b) 的距离的距离 符合上述条件的点的集合是什么?你能用描述法符合上述条件的点的集合是什么?你能用描述法来表示这个集合吗?来表示这个集合吗?rMAMp|符合上述条件的点的集合:符合上述条件的点的集合:xOyA(a,b)Mr(x, y) 圆上任意点圆上任意点M(x, y)与圆心与圆心A (a,b)之间的距离能之间的距离能用什么公式表示?用什么公式表示?rMAMp| /rbyax22)()(222)()(rbyax.21221221yyxxPP根据两点间距离公式:根据两点间距离公式:则点则点M、A间的距离为:间的距离为:.22byaxMA即:即: 把这个方
3、程称为圆心为把这个方程称为圆心为A(a, b),半径长为,半径长为r 的圆的圆的方程,把它叫做的方程,把它叫做圆的标准方程圆的标准方程.xyOCM( (x, ,y) )已知圆的圆心已知圆的圆心C( (a, ,b),),半径半径r则圆的标准方程是:则圆的标准方程是:222)()(rbyax知识点:知识点:一、圆的标准方程一、圆的标准方程 二、求圆的标准方程的方法二、求圆的标准方程的方法1 1、设圆的方程、设圆的方程2 2、找出三个关于、找出三个关于a a、b b、r r的的 条件条件3 3、利用条件列出方程组、利用条件列出方程组4 4、解方程组得出、解方程组得出a,b,ra,b,r的值并代入标准
4、方程中的值并代入标准方程中三、圆心:确定圆的位置;半径:确定圆的大小三、圆心:确定圆的位置;半径:确定圆的大小222)()(rbyax222)()(rbyax 因为圆心是原点因为圆心是原点O(0, 0),将,将a0,b0和半径和半径 r 带入圆的标准方程:带入圆的标准方程: 圆心在坐标原点,半径长为圆心在坐标原点,半径长为r 的圆的方程是什么?的圆的方程是什么? 得得:222)0()0(ryx 整理得整理得:222ryx1.写出下列圆的方程:写出下列圆的方程: (1) 圆心在原点圆心在原点,半径为半径为3. (2) 圆心在点圆心在点C(3, -4), 半径为半径为7. (3)经过点经过点P(5
5、,1),圆心在点,圆心在点C(8,-3).2. 说出下列方程所表示的圆的圆心坐标和半径:说出下列方程所表示的圆的圆心坐标和半径:(1) (x + 7)2 + ( y 4)2 = 36 (2) (x a)2 + y 2 = m2 应用举例应用举例(2) x2 +(y+2)2 = 1 例例1 写出圆心为写出圆心为 ,半径长等于,半径长等于5的圆的的圆的方程,并判断点方程,并判断点 , 是否在这是否在这个圆上个圆上)3, 2( A)7, 5(1M) 1, 5(2M 解:解:圆心是圆心是 ,半径长等于,半径长等于5的圆的标准的圆的标准方程是:方程是:)3, 2( A25) 3()2(22yx 把把 的
6、坐标代入方程的坐标代入方程 左右两边相等,点左右两边相等,点 的坐标适合圆的方程,所以点的坐标适合圆的方程,所以点 在这个圆上;在这个圆上;)7, 5(1M25) 3()2(22yx1M1M) 1, 5(2M2M2M 把点把点 的坐标代入此方程,左右两边的坐标代入此方程,左右两边不相等,点不相等,点 的坐标不适合圆的方程,所以点的坐标不适合圆的方程,所以点 不不在这个圆上在这个圆上 例例1 写出圆心为写出圆心为 ,半径长等于,半径长等于5的圆的的圆的方程,并判断点方程,并判断点 , 是否在这是否在这个圆上个圆上)3, 2( A)7, 5(1M) 1, 5(2M 解:解:圆心是圆心是 ,半径长等
7、于,半径长等于5的圆的标准的圆的标准方程是:方程是:)3, 2( A25) 3()2(22yxAxyoM1M2 怎样判断点怎样判断点 在圆在圆 内呢?还是在圆外呢?内呢?还是在圆外呢?),(000yxM222)()(rbyaxAxyoM1M2M3 从上题知道,判断一个点在不在某个圆上,只需将这个从上题知道,判断一个点在不在某个圆上,只需将这个点的坐标带入这个圆的方程,如果能使圆的方程成立,则在点的坐标带入这个圆的方程,如果能使圆的方程成立,则在这个圆上,反之如果不成立则不在这个圆上这个圆上,反之如果不成立则不在这个圆上 怎样判断点怎样判断点 在圆在圆 内呢?内呢?还是在圆外呢?还是在圆外呢?)
8、,(000yxM222)()(rbyaxAxyoM1M2M3 可以看到:可以看到: 点在圆外点在圆外点到圆心的距离大于半径点到圆心的距离大于半径 r ;点在圆内点在圆内点到圆心的距离小于半径点到圆心的距离小于半径 r 若若(x(x0 0-a)-a)2 2+(y+(y0 0-b)-b)2 2r r2 2时时, , 点点M M在圆在圆C C外外; ;若若(x(x0 0-a)-a)2 2+(y+(y0 0-b)-b)2 2=r r2 2时时, ,点点M M在圆在圆C C上上; ;若若(x(x0 0-a)-a)2 2+(y+(y0 0-b)-b)2 2r r2 2时时, ,点点M M在圆在圆C C内内
9、. .设点设点M M ,圆,圆 : :三:判断点与圆的位置关系的方法:三:判断点与圆的位置关系的方法:),(00yx222)()(rbyax把点M 的坐标代入圆的方程),(00yx 例例2 2 的三个顶点的坐标分别的三个顶点的坐标分别A A(5,1), (5,1), B B(7,(7,3)3),C C(2, (2, 8)8),求它的外接圆的方程,求它的外接圆的方程ABC 分析分析:不在同一条直线上的三个点可以确定一个圆,三角:不在同一条直线上的三个点可以确定一个圆,三角形有唯一的外接圆形有唯一的外接圆 解解:设所求圆的方程是:设所求圆的方程是 (1)222)()(rbyax 因为因为A(5,1
10、), B(7,3),C(2, 8) 都在圆上,所以它们的坐都在圆上,所以它们的坐标都满足方程(标都满足方程(1)于是)于是222222222)8()2()3()7()1 ()5(rbarbarba.25, 3, 22rba所以,所以, 的外接圆的方程的外接圆的方程 ABC25) 3()2(22yx解此方程组,得:解此方程组,得: 分析分析:不在同一条直线上的三个点可以确定一个圆,三角:不在同一条直线上的三个点可以确定一个圆,三角形有唯一的外接圆形有唯一的外接圆 解解: 例例2 2 的三个顶点的坐标分别的三个顶点的坐标分别A A(5,1), (5,1), B B(7,(7,3)3),C C(2,
11、 (2, 8)8),求它的外接圆的方程,求它的外接圆的方程ABC 例例3 已知圆心为已知圆心为C的圆经过点的圆经过点A(1, 1)和和B(2, 2),且圆心,且圆心C在直线上在直线上l:x y+1=0,求圆心为,求圆心为C的圆的标准方程的圆的标准方程 分析分析:已知道确定一个圆只需要确定圆心的位置与半径大:已知道确定一个圆只需要确定圆心的位置与半径大小圆心为小圆心为C的圆经过点的圆经过点A(1, 1)和和B(2, 2),由于圆心,由于圆心C与与A, B两点的距离相等,所以圆心两点的距离相等,所以圆心C在线段在线段AB的垂直平分线的垂直平分线 上又上又圆心圆心C在直线在直线l 上,因此圆心上,因
12、此圆心C是直线是直线l与直线与直线 的交点,半径的交点,半径长等于长等于|CA|或或|CB|ll 解解:因为因为A(1, 1)和和B(2, 2),所以线段,所以线段AB的中点的中点D的坐标的坐标),21,23(直线直线AB的斜率的斜率:31212ABk因此线段因此线段AB的垂直平分线的垂直平分线 的方程是的方程是l)23(3121xy即即033 yx圆心圆心C的坐标是方程组的坐标是方程组01033yxyx的解的解 例例3 已知圆心为已知圆心为C的圆经过点的圆经过点A(1, 1)和和B(2, 2),且圆心,且圆心C在直线上在直线上l:x y+1=0,求圆心为,求圆心为C的圆的标准方程的圆的标准方
13、程 解解:所以圆心所以圆心C的坐标是的坐标是)2, 3(圆心为圆心为C的圆的半径长的圆的半径长5)21 ()31 (|22 ACr所以,圆心为所以,圆心为C的圆的标准方程是的圆的标准方程是25)2() 3(22yx解此方程组,得解此方程组,得. 2, 3yx 例例3 已知圆心为已知圆心为C的圆经过点的圆经过点A(1, 1)和和B(2, 2),且圆心,且圆心C在直线上在直线上l:x y+1=0,求圆心为,求圆心为C的圆的标准方程的圆的标准方程 解解:圆的基本要素圆的基本要素圆的标准方程圆的标准方程圆心在原点的圆心在原点的圆的标准方程圆的标准方程判断点与圆判断点与圆的位置关系的位置关系作业布置作业布置: :P124习题习题4.1 A组组 第第2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 脚手架搭设专项施工方案
- 个人小额无抵押借款合同协议书
- 结束协议房地产代理合同
- 蔬菜营销策略购买合同
- 瓷砖订购合同模板
- 电子元件采购合同范本
- 购销纺织品的合同样本
- 校园多媒体设备招标文件
- 网络购销合同规范化管理的方法与策略
- 农资采购合同的效力问题
- 中华人民共和国职业分类大典是(专业职业分类明细)
- 国开2024年秋季《形势与政策》大作业答案
- 北师大版四年级上册除法竖式计算题300道及答案
- 2024-2030年中国橡胶伸缩缝行业市场发展趋势与前景展望战略分析报告
- 12SG121-1 施工图结构设计总说明
- DL∕T 2447-2021 水电站防水淹厂房安全检查技术规程
- AQ 1097-2014 井工煤矿安全设施设计编制导则(正式版)
- 四川省对外文化交流中心2024年公开招聘工作人员历年【重点基础提升】模拟试题(共500题)附带答案详解
- 许昌市2022-2023学年七年级上学期期末语文试题
- 小学语文学习任务群的设计与实施研究
- 2024年中考物理微专题练习热学计算1含答案
评论
0/150
提交评论