版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、会计学1生物化工基础生物化工基础23d/4d et 3d/5d Alloys Stability: High magnetic anisotropy 4d,5d elementExample: CoxRh1-x nanoparticles Sensitivity:High magnetic moments per atom 3d elements High density:Small size nanoparticles3q Cobalt : hcp (T750K)q Rhodium : fccfcchcpq Alloy: hcp (x50,5%) Disordered solid solut
2、ionW. Koster, Z. Metallkunde, 43 (1952)Bulk crystals: Co, Rh and Co1-xRhx4(fcc)Octahedron:1st and 2d neighbours distances)d2,d(mmmmABCABC (111) stackingABCATetrahedron:1st neighbours distance)d(mmClose packed structures :face centered cubic (fcc) and hexagonal compact (hcp) 5(fcc)Close packed struct
3、ures :face centered cubic (fcc) and hexagonal compact (hcp) In between two successive (111) planes (AB) or (BC) or (CA)Exist also in the other closed packed hcp structure (ABAB.) Tetrahedron and octahedron are the building blocks of close-packed structures 1st and 2d neighbours distances are charact
4、eristic of close-packed structuresTetrahedron:1st neighbours distance)d(mmOctahedron:1st and 2d neighbours distances)d2,d(mmmm6Close-packed nanoparticles Based on tetrahedronsonlynon periodic-based polytetrahedronsthe 2d neighbours distance is absent)d2(mmmmdBased on tetrahedrons and octahedronsmmd2
5、mmd1st and 2d neighbours distances are presentmmdperiodic or non periodic-based nanoparticles78Chemical techniques in mild conditions (T=300 - 400K) Co-decomposition by H2 of the two organometallic precursors in THF Size and dispersion stabilized by polymer (PVP), or ligand (HDA) Pure Co, M, Co3M1 C
6、o1M1, Co1M3 (close packed metals and alloys in cristalline state)SynthesisExperimentsStructure TEM, HREM Wide angle x-ray scattering Chemical distribution EFTEM EXAFS PVP- Co1Rh1 mean f f = 1.8 nm9CoRhCoCo3Rh1Co1Rh1Co1Rh3Rhr (nm)a. u.PVPhcpfccWAXS measurements of radial distribution functiondmmCoRur
7、 (nm)a. u.PVPhcphcp10CoRhPtRu3d4d5d678Specific non periodicStructures associated to Co andCo rich particlesPtCofcchcpa. u.CoPtPt1Co3Pt1Co1Pt3Co1Pt5Co1a. u.PtRuPtRufcchcpPt1Ru9Pt1Ru5Pt1Ru3Pt1Ru1Pt3Ru111First neighbour distance dmm as deduced fromWAXS measurements of radial distribution functionBulk f
8、ccRh concentration (at. %)nanoparticlesbulkfcchcpCoRhRu concentration (at. %)CoRu12HREM image showing a four fold symetry in the Co nanoparticle13Elemental map : cobalt rhodiumZero loss image - Co3Rh1dmm higher than in the bulk(shifted towards dmm in pure Rh) Rh-rich core ? EXAFS : oxidation at coba
9、lt edge, Rh environment for Rh EFTEM : on bigger particles (5- 6 nm) synthesized in HDA (hcp-fcc)14Co concentration (at. %)nanoparticlesbulk (B/at) (B/at) Co concentration (at. %)nanoparticlesbulk +CoRhCoRuMagnetic moment measurements151617IntroductionLevels of materials modelling10102103104105106fo
10、rce-fieldnumber of atomsaccuracytight-bindingab initio(parameter-free)quantum chemistryHartree-Fock, configuration interactiondensity functional theoryempirical potentialsmolecular dynamicsMonte-CarloCompromise between accuracy and computational tractabilityour study18ab initio DFTvStudy bonding mec
11、hanisms at the local levelvInfer general tendencies as a function of the chemical and structural ordersmall clusterslargeclusterssurfacesnowIntroductionsemi-empirical methodsvModel larger particlesvStudy properties that are not easily calculated in ab initio(CPU time)bulks19ab-initio Density Functio
12、nal Theory calculations Use of VASP code DFT-GGA (PW91) calculations : spin only, colinear magnetism PAW method (Projector Augmented Wave) advantages : very good accuracy, espec. for magnetic systemsreasonable computation time Calculation of ground state properties: cohesive energy Ecoh = E(system)
13、- E(isolated atoms) (eV/at.) geometry local / average magnetic moments (B/at.) Tests on bulks and small clusters of pure materials: OK Tests of different XC functionals20 4*3 parameters: , ij = CoCo, RhRh, CoRh rij0 : normalisation factors (first neighbours distances)rr(pjijj)rr(qijiijijijijijijeAeE
14、11220021 q N-body central force field model :v second-moment approximation of the tight-binding model: d-electron band contribution (n-body)v Born-Mayer short distance electron core-core repulsion (pair interaction)ijijqpAijij,Semi-empirical calculations21q Parameters fit: v Co-Co and Rh-Rh direct i
15、nteractions from F. Cleri, V. Rosato, (Phys. Rev. B, 48 (1993): Cohesive energy: Ec Elastic constants: Cij, Lattice parameter(s): a (c).v Co-Rh mixed interactions: Cohesive energies Lattice parametershypothetical ordered alloysat the studied compositionsofab-initioSemi-empirical calculations2223Whic
16、h structure for the pure Co particles? Polytetrahedral 100 150 at. Apparent four fold symetry axis Reproducing the WAXS curves24Polytetrahedral geometrical models105 atomsVan de Waal, Non Cris. Sol. 189ExpModel024681012r (A)137 atomsCorrespondingHREM simulationsDoy et al, Cond. Mat. 97 024681012r (A
17、)ExpModelView along the 4 fold symetry axis25Co particles (100N150)-3.9-3.85-3.8-3.75-3.7-3.6590100110120130140150160Number of atomsT = 0 K Potential energy Ep (eV/at.)MD StudyThermalisation in the liquid state1,2000,000 DM steps runSnapshots every 10,000 stepsQuenching to T = 0 K Selection of the l
18、owest energy configurations26 -3.78-3.76-3.74-3.72-3.7-3.680200400600800100012001400Cohesive energy at 0 K (eV/at.) Recovery and quenching (K) 00.20.40.60.81024681012300 K1200 Ka. u.d () 300K1200 KCo particle (105 at.)60-70 meVRadial distribution function27RELATIVE STABILITIES OF THE DIFFERENT Co MO
19、DELSPerfect octahedron50-60 meV30 meV-3.86-3.84-3.82-3.8-3.78-3.76-3.74-3.72-3.7020040060080010001200Ep (T=0K) T (recovery and quenching)105 polytetrahedron137 polytetrahedron129 octahedron137 octahedron105 octahedron147 (surface vacancy + top surface atom)Perfect polytetrahedral structures are unst
20、able relative to the defective octahedral structuresMost probable:Metastable glass like high temperaturedisordered polyhedral structures28024681012r (A)a. u.Exp105 at.129 at.137 at. High T105 at. 137 at. Polytetrahedra2930Which chemical order for the CoxRh1-x particles ? Co rich: Polytetrahedral Rh
21、rich: with octahedral sites 100 500 at. Strong non linear dmm dilation with x Reproducing the WAXS curvesMonte Carlo Metropolis study:Simulated Annealing with Atomic Relaxation and Exchanges between Co and Rh atoms.A large variety of initial states: Disordered, Ordered, Core/Shell fcc, hcp, Cuboctah
22、edral, Different initial temperatures31Co3Rh1(hcp) Co Rhdistance to centre()Co1Rh1(fcc)Co1Rh3(fcc)300K MCM Relaxation and ExchangeStructure and chemical order32Co1Rh1Co1Rh3 Co Rhdistance to centre()Co3Rh11600K TO 300 K MCM Relaxation and Exchange Simulated AnnealingStructure and chemical order33Radi
23、al Distribution Functions ExperimentalModel1600 K Simulated annealing300K Structure and chemical order34Intermetallic distance dmm(nm)Structure and chemical order0.250.260.2700.51d0 (nm)at % RhsimulationsexperimentalBulk :fcc modelfcc exp.hcp exp.353637magnetismmagnetism enhancedby geometricaldilati
24、oninteratomicdistancemagnetism enhanced by coordination reductioncoordinationGeometrical contraction at reduced coordinationz = 2z = 6z = 12Magnetism: from the single atom to the infinite cristalEcohMagnetic moment (B)Monolayer(111)Linear chainbulkcfcIsolatedatomz = 12z = 2z = 6Cobalt example3831.57
25、1.93CoCoFrom the atoms up to the bulks31.82RhRh0.00Magnetic moment per atom (B/atom)CoRhCoRhxCo = 0.52.291.601.430.40Magnetism: alloying effect 39Fcc(111) Rh surface doped with Covacuumtowards bulkS positionS-1 positionS-2 position-0,60-0,55-0,50-0,45-0,40-0,35-0,30-0,25-0,200,000,250,500,751,00SS-1
26、S-2single layer Co concentrationFormation energy (eV)subsurface position favoredMagnetism: surface effect 40Fcc(111) Rh surface with Co monolayervacuumtowards bulkThere is a surface Co segregationWith a marked preference for the subsurface positionS positionS-1 positionS-2 position-2,10-2,00-1,90-1,
27、80-1,70-1,60-1,50-1,401234567position of the Co MLmagneticnon-magneticAdsorption energy (eV/Co at)Magnetism: surface effect 411.001.502.002.503.003.504.004.500.000.200.400.600.801.00concentration en Co intracouchemoment magntique (B/atome)Moment magntique de CoCo subsurface Co preserves a high magne
28、tic moment1.001.502.002.503.003.504.004.500.000.200.400.600.801.00concentration en Co intracouchemoment magntique (B/atome)Co subsurfaceSubsurface position stable an highly favorable for magnetism: effective giant magnetic moments there are high induced moments on neibourghing RhsEffective magnetic
29、moment (Co+ induced Rh)Co subsurfacevacuumMagnetic enhancement at surface?Magnetism: surface effect 42 importance of size effectsRhCorat =1.25 1.35 1.39 PtAtomic radiusCo Core ?ConRh13-n centred icosahedral clustersdradialdsurfaceIcosahedral specific geometry : radial bonds in compression surface bo
30、nds in tensionMagnetism: size effect 43Ecoh (eV/at)Sz (B)RhColegend3,34313,7921Co Core and magnetic enhancement?Magnetism: size effect 3,87153,44213,30213,7821440.000.501.001.502.002.503.003.500.000.250.500.751.00Co concentrationaverage magnetic moment (B/atom)N=2N=3N=4N=5N=6N=7N=13bulksatomsisolate
31、d atomsdimersbulksN= 4 4N= 6 4N= 5 4N= 3 4N= 7N=13 4 Strong enhancement in nanoparticles compared to bulkCoMRhNMean magnetic momentComparaison CoMRhN et CoMPtNMagnetism: size effect 45Rh37Co Sz = 18 B = 0.47 B/atom Remarquable magnetic enhancement : eff(Co)=16 B but antiparallel moments at the surfa
32、ceVers des particules de taille exprimentaleRh38 Sz = 2 B = 0.05 B/atom (exp. : 0.160.13 B/atom for Rh34)Magnetic core poorly magneticLocal magnetic moments chart (B)Local magnetic moments chart (B)Magnetism: size effect Co Core and magnetic enhancement?46SynthesisMagnetic measurements47Intermetalli
33、c distance dmm(nm)0.10.50.90.240.260.280.3dC (nm)Co-Rh0.240.260.280.30.10.50.9d0 (nm)dC (nm)Rh-Rh0.10.50.90.240.260.280.3dC (nm)Co-CoCo1Rh1Structure and chemical order48Low THigh TExp105 at.129 at.137 at.024681012a. u.r (A)CoModel490,000,100,200,300,400,500,600,700,800123456number of Co first neighb
34、orsRh_SRh_S-1Rh_S-21012010Local Moments induced on Rhby Co in S-1 positionCo magnetic momentvs Co layer concentrationMagnetic enhancement at surface?Magnetism: surface effect 503d/4d et 3d/5d Alloys Stability: High magnetic anisotropy 4d,5d elementExample: CoxRh1-x nanoparticles Sensitivity:High mag
35、netic moments per atom 3d elements High density:Small size nanoparticles51q Cobalt : hcp (T750K)q Rhodium : fccfcchcpq Alloy: hcp (x50,5%) Disordered solid solutionW. Koster, Z. Metallkunde, 43 (1952)Bulk crystals: Co, Rh and Co1-xRhx52(fcc)Octahedron:1st and 2d neighbours distances)d2,d(mmmmABCABC (111) stackingABCATetrahedron:1st neighbours distance)d(mmClose packed structures :face centered cubic (fcc) and hexagonal compact (hcp) 53Chemical techniques in mild conditions (T=300 - 400K) Co-decomposition by H2 of the two organometallic precursors in THF Size and dispersion stabilized b
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度化妆师与摄影工作室合作协议3篇
- 2024年度公益慈善事业三方捐赠协议3篇
- 2024年区块链技术软件代理合作合同3篇
- 2024年智慧城市项目投资合作协议范本示例3篇
- 2024年度中小企业科技创新贷款保证协议3篇
- 2024年度电子元器件采购法务与合同执行细则3篇
- 2024年度三亚地下管线非开挖顶管施工合同
- 2024年智慧社区建设投资合作框架协议2篇
- 2024年度光纤网络安装与维护外包合作协议3篇
- 2024版上海离婚协议书范本分析2篇
- 江苏省无锡市宜兴市2024-2025学年度第一学期期中考试九年级语文
- 重要隐蔽单元工程(关键部位单元工程)质量等级签证表
- 2025蛇年年终总结新年计划工作总结模板
- 劳动用工风险课件
- 小学二年级数学上册-加减乘除法口算题800道
- 语 文病句专题讲练-2024-2025学年统编版语文七年级上册
- 北京市2023-2024学年七年级上学期期末考试数学试题(含答案)2
- 学校义务教育均衡发展一校一策方案
- ASTM-D3359-(附著力测试标准)-中文版
- 高校实验室安全通识课学习通超星期末考试答案章节答案2024年
- DBJ15-22-2021-T 锤击式预应力混凝土管桩工程技术规程(广东省)
评论
0/150
提交评论