博弈论与信息经济学部分课后习题答案_第1页
博弈论与信息经济学部分课后习题答案_第2页
博弈论与信息经济学部分课后习题答案_第3页
博弈论与信息经济学部分课后习题答案_第4页
博弈论与信息经济学部分课后习题答案_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、二Eq”70-0.375q1qi380=93.33如对您有帮助,欢迎下载支持,谢谢!L某一市场需求函数如下:某一市场需求函数如下:/=/=100-0.100-0.5 5(+私)私)在该市场上只有两家企业,它们各自的成本函数为在该市场上只有两家企业,它们各自的成本函数为G=必4=0.580,q230(否则追随者可以选取产量,使价格等于古诺价格,此时先行者利润低于古诺均衡时情况)a.如果企业2成为领导者,观察企业i能否采取威胁战略使己方利益为正,对方利益为负:n1(qi,q2)=(i00-0.5q1-0.5q2qi5qi0即:出2(q1,q2)=(100-0.5q1一0.5q2q2一0.5q;0=

2、200-2q2:二q110,只要企业i威胁其产量q1将满足上式,则企业2将不敢先行动若q2W10,与先行动者的q230矛盾。因此企业2不会是先行者b.考虑企业1能否成为先行者,由a已经知道企业1可以成功在企业1先行时成功威胁企业2。故只需考虑如果企业1先行,企业2能否威胁企业1当企业1先行动时,企业2决策max2qi,q2)=100-0.5qi-0.5q2q2-0.5qfq2=q2=50-0.25qi企业i决策:maxiqi,q2=100-0.5qi-0.5q2qi-5qiqi而企业2要惩罚企业1为领导者必须满足尸,一一一一2一兀2gl,q2)=(100-0.541-0.5q2q2-0.5q2

3、0-H1(q1,q2)=(100-0.5q1-0.5q2q1-5q10二190-q1:二q2二100-0.5q1二0180这与80q193.33矛盾。c.综合a,b,可知故在斯塔格伯格模型中,只可能企业1成为领导者,企业2成为跟随者。(2)企业1先行动时,q1=q2=80,兀1=3266.67,n2=711.1133企业2先行动时,q1=67.5,q2=35川1=2953.125n2=1093.75两企业同时行动时,q1=80,q2=30,二1三3200,二2三900博弈的支付矩阵为企业2领导者跟随者企业1领导者3200,9003266.67,711.11跟随者2953.125,1093.75

4、3200,900可见对任何企业,先行动均为占优策略。考虑只进行一期的博弈,即时企业1进行威胁,企业2会了解到企业1的威胁策略不是最优的,故威胁无效。市场的最后结局为古诺均衡,企业1生产80,企业2生产30o如果只进行有限期的博弈,则在最后一期,由于双方预期到对方都会采取最优策略,必然进行古诺竞争。依此类推,倒数第2,3,4期,双方也会进行古诺竞争。即市场结局为古诺均衡。(1)中的Stackelberg只在一种情况下成立,即博弈有无限期。此时企业1如果使用威胁策略将企业2排除在外,虽然在短期之内不是最优的,但是在长期可能是最优的。故企业2可能被胁迫成为追随者。市场结局是Stackelberg均衡

5、。工F面的两人睥彝可以解翼为两个黑头企业的价格竞争城弈,其中声是企业I的价格 T 是企业2的阶格-企业1的利润函数是:7T)=一一绚十CV企业2的利涧函数是:R=一4L+P求解;tn西个企业同时决策时的纯战略)纳什均衡”(2)企业1先抉策时的子博舞精临纳什均衡(3)金宓2先决策时的千博弈精墉讷什均衡。是否存在某些参敛值 g工)使得诲一个企业都希里白己先决秉?如对您有帮助,欢迎下载支持,谢谢!因此企业1的产量决策范围为80q193.33如对您有帮助,欢迎下载支持,谢谢!(门企业 1 先决策4=6代入企业 1 的利洵函数,得到:再求企业1的反应函数:=-2(户一 M+=50ftP今p=uh一,因此

6、企业】先决策时的子博弈完美纳什均急仍然是:企业J定饰。=而一广,企羹2定转。=瓦与两个企业同时定价时相同利制当然也与同时定价时相同运实际上是因为本博弈中后彳J为的企业2的洗择与先行为的企业】的选择无关行)企业2兔次柒,根勒逆推归纳法,先求企业1的反应函数:疗2(户 j 叩+士)=0ng一叫一C代入企业2的利海函数得:*;=-S-6尸+p二一(。-6)十叩一 r求企业2的反应函数得:二-2(9-6)+遛=0r/ur也把读价格代入企业 I 的反七函数.得;/t=MfI彳+他-r因此企业 2 先决策时子博弈完美纳什均衡是:企业定价为一+M-7 企业 2 定价为 4 一 m 十儿比小 1 两个企业的利

7、润为:心(Qb 产+P=一(子+&-占)+、十曲-1 j+质七4 4如对您有帮助,欢迎下载支持,谢谢!(4)因为只有先决策的利润大于后决策的利洵因企业力希里先决箫,因此当:丁十由一c他一E4企业1希望自己先扶策这个不哥式在口h0的情沆下总的满息当-bf企业2希望自己先选羯.这个不等式要求为此根据上述就个不箸式,只塞日。、5+S0力一r0和卜屏-0。其中碧四个不等式在。工。井4H第三个不等式成立网必猾成h前三个不等式结合上述才16,2318,4M63,09,62,851美元1约翰23斯密2-3 34.1-3,33-3,1-3+3-U1如对您有帮助,欢迎下载支持,谢谢!L LR R去35,

8、15,16.2M工1甘,甘,4 43-6幺幺 6 62找出给定对方策略时,本方的国优策略(以卜制”标注).由此.可知.没有占优均衡.但存在唯一纳什均衡(口一工1.6.模型化下述划拳博弈:两个朋友在一起划拳喝酒,每个人有四个纯战略:杆子,老虎, 鸡和虫子。输赢规则是:杆子降老虎,老虎降鸡,鸡降虫子,虫子降杠子。两个人同时出令。如果一个打败另一个,赢者的效用为1,输者的效用为-1;否则,效用均为。写出这个博弈的收益矩阵。这个博弈有纯策略纳什均衡吗?计算出混合策略纳什均衡。解:模型化结果如下.元素为8AuBL其中Ui为参与者i的在给定策略组合下的效用水平.杆子鸡虫子A杆子0.01*一1。,0-1.1

9、老虎1,10,010,0鸡0,0-110+0L-1虫子L10,0-1,10,0对两个参与老,找出给定对方策略时,本方的占优策略(以F划统机汴,由此,可知,没有纯策略纳什均衡*分别记、“为B选择策曜的概率.iLtixh.cay其中灯代我杆子,二代表老虎,劭代长将,HI代表虫子.记白=(%-/,/*%.),b=(口也44).那么,使/对各个纯您略均无差异的占需要满足与-%=_&+/卜=_%+九=%一编,以及Z也=1.之解得,%=九,%=%,且+久=。“5,4之。,同理,可得使笈忖各个纯策略均无差异的满足=&,n%+%=也5,%0因此,满足以上条件的策略组合g,都是该博弈的混合策略纳

10、什均衡,在F表所示的疵略型博奔中,找出占优均鬻一答:对两个辔与样.?.巧克力市场上有两个厂商,各自都可以选择市场的高端(高航量),还是低端(低航量 L 相应的利润由如下得益矩阵给出:如果有的话,哪些结果是纳什均衡.答:(高,低),(低,高),对应结果分别为(100,800),(900,600).如何各企业的经营者都是保守的,并都采用最大最小化策略,结果如何?答:均衡为(高,高),结果为(50,50).合作的结果是什么?答:均衡为(低,高),结果为(900,600).哪个厂商从合作的结果中得好处最多?那个厂商要说服另一个厂商需要给另一个厂商多少好处?答:厂商1得好处最多.应该给200.这个问根据

11、不同的标准,应有不同的答案.乱考虑下列策略型博弈:乱考虑下列策略型博弈:D DAMAMD请问,该博弈里有几个均衡请问,该博弈里有几个均衡? ?答:只有一个均衡,即纯策略均衡(D,R).考虑混合策略均衡,设B选择L、M、R的概率分别为a、b、c,使A对各个纯策略无差异,它们需要满足a+b+c=1,a-2b=-2a+b=c,且1a,b,c0但由前两个条件解得唯一解a=b=1,c=-1,但该解不满足最后一个不等式条件.所以该博弈不存在混合策略纳什均衡.轧在下列策略型博奔里轧在下列策略型博奔里. .付必是占优解?什么是炖簟略纳什均衡解?付必是占优解?什么是炖簟略纳什均衡解?谓戏者谓戏者 2LNQLNQ

12、2tQL L1 1丸2 23;41/2L3*2k0k0答:没有占优解.纯策略纳什均衡解为(M,L),(T,R).10.你是一个相同产品的双寡头厂商之一,你和你的竞争者生产的边际成本都是零(1)设你们只有一次博弈,而且必须同时宣布产量,你会选择生产多少?你期望的利润是多少?为什么?(2)若你必须先宣布你的产量,你会生产多少?你认为你的竞争者会生产多少?势?为了得到先宣布或者后宣布的选择权,你愿意付出多少?(3)现在假设你正和同一个对手进行十次系列博弈中的第一次,每次都同时宣布产量,你想要你十次利润的总和(不考虑贴现)最大化,在第一次你将生产多少?你期望第十次生产多少?第九次呢?为什么?1答:我的

13、产量为古诺解.解古诺均衡得到,q=10,利润为100.因为,一次产量竞争,各方均按照预期对方产量来确定利润最大化产量,在均衡中意味着预期与实际产量相等.所以预期产量应为古诺均衡解.2答:先宣布产量等同于在Stackelberg竞争中作为领先者.这时,我的最优产量为15,预期利润为112.5.而此时对方产量为7.5,预期利润为56.25.与同时宣布和后宣布相比,先宣布为一种优势.与古诺解相比,这只是一种角度.我愿意付出12.5.1,1,-2-2T,10,00,0-2,-2,1 1h-2h-2口,00.0.0 00,00,0L1如对您有帮助,欢迎下载支持,谢谢!厂商 1低质量高质量-20,-309

14、00, 600IQk80050, 50而市场的需求函数是p=30-Q你预计你的利润是多少?先宣布时一种优势还是劣厂商 2低质量高质量BL L为什为什如对您有帮助,欢迎下载支持,谢谢!3答:第一次仍将生产10,而第十次,第九次仍然生产10.按反向归纳法,考虑第十次博弈,子博弈纳什均衡要求该次博弈必然为纳什均衡,即古诺均衡.由于第九次博弈的结果对第十次没有影响,因此第九次的均衡也是古诺均衡.同理可得在十次博弈中任一次的均衡皆古诺均衡.11.考虑下图所示的房地产开发博弈的扩展型表述:(1)写出这个博弈的策略式表述。(2)求出纯策略纳什均衡。1写出这个博弈的策略式表述.A开发2求出纯策略纳什均衡.在策

15、略式表述的收益矩阵里,不开发),(不开发,开发).3求出子博弈完美纳什均衡.用反向归纳法.当A选择开发,B将选择不开发,因为这样B的收益0大于开发的收益-3,这样A选择开发的收益为1.同理可得A选择不开发收益为0.因此,A会选择开发.(用箭头表示在给定结点行动者的最优策略.)可得到子博弈纳什均衡(开发,不开发)8点到10点的收视率,可选择较好的节目放在前面还是后面。他们决策的不同组合导致收视率如(1)如果两家同时决策,有纳什均衡吗?(2)如果双方采用规避风险的策略,均衡的结果是什么?(3)如果电视台1先选择,结果是什么?若电视台2先选择呢?(4)如果两家谈判合作,电视台1许诺将好节目放在后面,

16、这许诺可信吗?结果可能是什么?(3)求出子博弈完美纳什均衡。不开发B开发(-3,-3)不开发(0,1)(1,0)(0,0)将给定对方策略,本方占优策略所对应收益以下划线表示.由此可得该博弈的纯策略纳什均衡为(开发,12.两家电视台竞争周末黄金时段晚下:下:电视台电视台2前面23202320后面*23*2316161616开发曲开发曲A A电视台电视台1 1前面后面如对您有帮助,欢迎下载支持,谢谢!电视台1前面后面电视台2前面电1S23.20后面4.2316J61如果两家是同时决策,有纳什均衡吗?答:有,是(后面,前面)2如果双方采用规避风险的策略,均衡的结果是什么?答:毋需规避风险.3如果电视

17、台1先选择,结果有什么?若电视台2先选择呢?答:如第1题,按反向归纳法解.若1先选择,结果为(23,20);若2先选择,结果为(23,20).4如果两家谈判合作,电视台1许诺将好节目放在前面,这许诺可信吗?结果可能是什么?答:不可信.因为该博弈只有一个纳什均衡,在该均衡中1选择将好节目放后面.13.X公司垄断了震动充水床垫的生产。这种床垫的生产是相对缺乏弹性的一一当价格为每床1000元时,销售25000床;当价格为每床600元,销售30000床。生产充水床垫的惟一成本是最初的建厂成本。X公司已经投资建设生产能力达到25000床的工厂,滞留成本与定价决策无关(1)假设进入这个行业能够保证得到一半

18、市场,但是要投资10000000元建厂。构造X公司策略(p=1000或者p=600)反对进入策略(进入或者不进入)的报酬矩阵。这个对策有纳什均衡吗?(2)假设X公司投资5000000元将现有工厂的生产能力扩大到生产40000床充水床垫。阻止竞争对手的进入是有利可图的策略吗?(将答案中的WET改为X)1假设进入这个行业膛够保证得到一半市场.但是要投资16000,00016000,000集而隹厂,构造WETWET羊郎(=1-000=6001-000=600)反对进入策晞(进入或不进入)的报M M即阵.这个对寰有纳什均衡吗?答:报酬也用加卜,支H H的单位为nullimi.nullimi.潜在进入者

19、进入WHT$lR00L23WHT$lR00L23专$600$6009,-1不进入不进入茗。茗。15,015,0此时市场为”与0000床,价格为LQMLQM美元.此时I I甘场为30,00030,000用.伊格为600600犬元.有纳什均衢打。0 0宿迸入上2尚设WETWET公司投资5,000.0005,000.000美元将现有二厂的生产能力扩太到生产4040、师0 0床允水味垫,阻止竞争时手的进入是仃利可图的策略叫T T答:此时报酬矩阵如卜:漕在进入者漕在进入者进入进入WETSWETS1,0001,0007J2J7J2JS600S6004,44,4不进入不进入0000110110显然,生产能力

20、的扩充不能阴止M M手反而仔低白身均衡利润水平.只要进入行业能保可用到-半的后场,市场进入对潜在进入拧就出有动力的.14.下表给出了一个两人的同时博弈,若这个同时博弈进行两次,第二次博弈是在知道第一次博弈的前提下进行的,并且不存在贴现因子。收益(4,4)能够在纯策略的子博弈完备的纳什均衡中作为第一次博弈的结果吗?如果它能够,给出策略组合;如果不能够,请说如对您有帮助,欢迎下载支持,谢谢!明为什么不能?2 2LCRLCRT T3,3,1 10,00,00 01 1AfAf2 2t t1 11 1,2 21 1B B1,20,11,20,14 4我将“不存在贴现因子疗理解为“贴现因子为 11解:若

21、该博弈为一次博弈,有两个纯策略纳什均衡(T,L),(M,C),和一个混合策略纳什均衡(0.5,0.5,0),(0.5,0.5,0).三个均衡分别对应结果(3,1),(1,2)和(1.5,1.5).之所以(4,4)能在纯策略的子博弈完美纳什均衡中作为第一次博弈的结果,是其中一方都可以威胁对方,如果对方不在第一次博弈时选择(4,4)所对应的行动,第二次博弈时将采取最小化对方最大化收益的行动,如果对方在第一次选才I了(4,4)所对应的行动,第二次博弈时将采取最大化对方最大化收益的行动.并且给定对方的行动,威胁者无动力改变自己的策略.游戏者2最小化对方最大化收益的行动是C.那么,参与者2试图引导结果(

22、4,4)的策略为:第一次选择R.如果第一次1没有选择R,那么第二次选择C;如果第一次2选择R,1将选择L.用反向归纳法.第二次博弈必然是纳什均衡,(T,L)或(M,C).考虑第一次博弈,给定2选择R,1如果选择T,那么两时期的收益现值为6,如果选择B,该现值为7.因此,1在第一次博弈中会选择B.综上,给定2的策略,1的可能策略之一是,第一次选择B,第二次选择T.然后考虑给定1的这个策略,2是否有动力偏移自己的策略.第二期的选择必然是纳什均衡,无动力偏移.而在第一次博弈中,给定1选择B,2必然选择R.因此2没有动力偏移自己的策略.因此(4,4)能够作为第一次博弈的结果.其均衡策略组合为参与者1:

23、第一次选择B,第二次选择T.参与者2:第一次选择R.如果第一次1没有选择R,那么第二次选择C;如果第一次2选择R,1将选择L.注:事实上,只要1的策略满足“第一次选择B,然后如果2第一次选择R,第二次就选择M”就可以了.进一步地,1非均衡路径上的行动不影响结果.因为,第二次选择的行动必然是一次博弈中的纳什均衡;同时,1无法也没有必要威胁2第一次要选择R(无法:我们的均衡路径上,给定第一次博弈结果,2的均衡收益已经最小化;没有必要:R是2在第一次博弈中,给定1选择B的占优行动).15.假定有几位企业家,每位企业家都有一个投资项目。每个项目的回报R,是服从于a,b上的均匀分布的,这里a=100,b

24、=150。每个项目的成本为100,而所有的企业家都没有自由资金。若银行向企业家贷款,银行是委托人,企业家则成了代理人。银行为了观察与监督企业家对资金的使用情况,则要在每一项目上花费5(观察的成本)。问:(1)项目的期望毛回报E(R)是多少?(2)如果银行需要以25%为利率去吸引存款,上述项目能从银行贷到资金吗?请说明你的理由。(3)如银行以10%的利率去吸引存款,又要监管所有项目,则银行从项目的回报R中要分多高的百分比才能使银行收支相抵。(4)(3)问中的分享合约在有监督成本的条件下能产生纳什均衡吗?为什么?1项目的期望毛回报E(R)是多少?曰-:=125=125解:由于R属于a,b上的均匀分

25、布,所以二2如果银行需要25%的利率去吸引存款,上述项目能从银行贷到资金吗?10如对您有帮助,欢迎下载支持,谢谢!解:除去利息因素,该项目对每一个企业家的期望利润为25.而银行贷款100给一个项目,其成本是30,包括支付存款利息25,和对该项目的考察成本5.即使企业将所有的利润给银行,对每一个项目,银行都仍有5的损失.因此上述项目是无法向银行贷到款的.3如果银行以10%的利率去吸引存款,又要监管所有项目,则银行从项目的回报R中,要分多少的百分比才能使银行收支相比.解:银行现在给每个项目贷款的成本为15.又除去利息支付,项目的期望回报为125.那么银行需要分92%(115/125)才能收支相抵.

26、4(3)问中的分享合约在有监督成本的条件下能产生纳什均衡吗?为什么?解:这里监督成本固定且意味着由此不存在信息不对称情况(正如题目所言,)会产生纳什均衡,对预期纯利润的任何一种分配方式都是纳什均衡.19.BayesianNashequilibrium.Thispartcontainstwoquestions.19.BayesianNashequilibrium.Thispartcontainstwoquestions.(1)Battleofsexeswithincompleteinformation(versionone)Battleofsexeswithincompleteinformati

27、on(versionone)Considerthebattleofsexeswithincompleteinformation.ThisstaticgameofincompleteinformationhasaBayesianNashequilibrium:(Opera,(Operaifhappy,PrizeFightifunhappy)ifChrisbelievesthatPatishappywithprobability0.5,andunhappywithprobability0.5(Why?Surelyitneedscomputingcarefully).Nowwecheckwhatha

28、ppensifChrisbeliefchanges.LetsassumethatChrisbelievesthatPatishappywithprobabilityp,andunhappywithprobability1pDeterminetherangeofpsuchthat(Opera,(Operaifhappy,PrizeFightifunhappy)isaBayesianNashequilibrium.NowPatspreferencedependsonwhetherheishappy.Ifheishappythenhispreferenceisthesame.Ifheisunhapp

29、ythenhepreferstospendtheeveningbyhimselfandhispreferenceisshowninthefollowingtable.ChriscannotfigureoutwhetherPatishappyornot.ButChrisbelievesthatPatishappywithprobability0.5andunhappywithprobability0.5PayoffsPayoffsififPatPatisishappyhappyPatPatPayoffsifPatPayoffsifPatisisunhappyunhappyPatPatwithpr

30、obability0.5withprobability0.5OperaOperaPrizeFightPrizeFightwithprobability0.5withprobability0.5OperaOperaPrizeFightPrizeFightOperaOperaChrisChris2r10r0OperaOperaChrisChris2,D0,2PrizeFightPrizeFight0 0, ,0 01,2PrizeFightPrizeFight0,11,020.设定一个博弈模型必须确定那几个方面?(博弈论的构成要素有哪些?)答:广义上讲博弈论则主要由以下五大要素构成:一,决策主体(

31、Player):又称局中人或博弈方,指的是博弈中能独立决策,独立行动并承担决策结果的个人或组织.二,策略空间(Strategyspace):又称策略集,是指供参与者选择的策略和行动空间三,效用(Utility):也就是博弈者之间相互争夺的利益.博弈双方或多方都是围绕一定利益展开的,因此博弈胜负的评判结果主要是靠策略选择后的得失来衡量.四,次序(Orders):即各博弈方在决策时有先后之分,因为博弈方在决策选择上要不时地调整改善,一定要十分注重次序轻重的问题.如果决策的次序和实施时间不同,则博弈的结果必会有所差别11PayoffsifPatishappywit)probabilitypPatOp

32、eraPrizeFightChrisOpera2、10,0PrizeFight0,01,2PayoiTsifPatisnnliappywiHipiobability1-pPatOpeiaOpeiaPrizeFightPrizeFightClirisOperaOpera2 2.0.00 0.2.2PiizeFight0,0,】1 1, ,0 0如对您有帮助,欢迎下载支持,谢谢!五,博弈均衡:博弈虽然是为了利益和胜利,但并非是利益尽占,而是要遵循均衡理论21.“囚徒困境”的内在根源是什么?举出现实中囚徒困境的具体例子。答:内在根源是个体之间存在行为和利益相互制约的博弈结构中,个体理性与集体理性的矛

33、盾两个同学考试被怀疑作弊,但无确切证据。经分开审问。全招了。(具体内容自己展开)“囚徒的困境”的内在根源是在个体之间存在行为和利益相互制约的博弈结构中,以个体理性和个体选择为基础的分散决策方式,无法有效地协调各方面的利益,并实现整个、个体利益共同的最优。简单地说,“囚徒的困境”问题都是个体理性与集体理性的矛盾引起的。现实中“囚徒的困境”类型的问题是很多的。例如厂商之间价格战、恶性的广告竞争,初中、中等教育中的应试教育等,其实都是“囚徒的困境”博弈的表现形式。23.多重纳什均衡是否会影响纳什均衡的一致性预测性质,对博弈分析有什么不利影响?多重纳什均衡不会影响纳什均衡的一致预测性质。 这是因为一致

34、预测性不是指各个博弈方有一致的预测, 而是指每个博弈方自己的策略选择与自己的预测一致。对博弈分析主要的不利影响是,当博弈存在多重纳什均衡,而且相互之间没有明确的优劣之分时,会造成预测分析的困难,影响以纳什均衡为核心的博弈分析的预测能力。存在帕累托上策均衡、风险上策均衡、聚点均衡或相关均衡的可能性,并且博弈方相互之间有足够的默契和理解时,多重纳什均衡造成的不利影响会较小。24.设古诺模型中有n家厂商。qi为厂商i的产量,Q=qi+-+qn为市场总产量。P为市场出清价格,且已知P=P(Q)=a-Q(当Qa时,否则P=0)。假设厂商i生产qi产量的总成本为Ci=Ci(qi户cq也就是说没有固定成本且

35、各厂商的边际成本相同,为常数c(ccqi=(a-Q-c)qi曳二口令的1,则有:q1=a-c-Q*?(1)(-0,也就是S20,哥就会接受,否则不会接受。由于冰激凌的份额不可能是负数,因此该条件实际上必然是成立的,也就是说因为哥不接受弟的方案冰激凌会全部化掉,因此任何方案哥都会接受。现在回到前一阶段弟的选择。由于弟知道后一阶段哥的选择方法,因此知道如果不接受前一阶段哥提出的比例,自己可以取S2=0,独享此时还未化掉的1/2块冰激凌;如果选择接受前一阶段哥的提议,那么自己将得到1-S1,显然只要1-S11/2,即S101/2,弟就会接受哥的提议。再回到第一阶段哥的选择。哥清楚后两个阶段双方的选择

36、逻辑和结果,因此他在这一阶段选择S1=1/2,正是能够被弟接受的自己的最大限度份额,超过这个份额将什么都不能得到,因此S1=1/2是最佳选择。综上,该博弈的子博弈完美纳什均衡是:哥哥开始时就提议按(1/2,1/2)分割,弟弟接受。每阶段只化掉1/3的情况请自己分析。V=nnJiMO.M)26.考虑下列基本的代理人模型这里,y为代理人对委托人的贡献,a是代理人的努力程度,k0为参数(vk可代表委托人为代理人所创造的工作环境与技术装备,k越高,则给定a会产生更大的贡献)。又假定,委托人与代理人都是风险中性的。代理人的努力成本函数为C(a)求解:(1)假定委托人与代理人之间签订一个线性合约:w=s+

37、by代理人会采取什么行动?代理人的行动“a”会如何海而发生变化?代理人的行动会如何随k而发生变动?13如对您有帮助,欢迎下载支持,谢谢!-MC(fl)=+T又假定代理人的努力的成本函数为6=-证明:最优线性契约中激励系数必满足-解;代理人的期望剩余为*+b 到-。(=工+加 0 匕)最大化间即是max5+bka-C(rI&满足 J$tbk仪-C(of)苍 0不考虑为束,从无条件最大化的一阶条件得到(0)=8.记满足该条件的叮=,如果$十耻戊*-C(X)之 01 代理人会将工作努力保持在边际成本等从的水平匚由于一般情况下)因此,随着方,上的增加,值也会增加.若,+我/不满足.代理人将选择

38、仪=0,且人、出的变化均不影响胃力水平.2现在假定代理人的效用函数形式为it(x)=-eC(or)=a又假定代理人努力成本为2.证明:最优线性契约中的激励系数 b,必海足F+r/万 fIhbEa(1+)=exp4$+bka证明二令工HK$+即。占+匕片值+6 君,有 I.2IL因此.给定白+$满足代黑人个人理性为束,代理人的最优筹力水平由.rb-cr-1,max$-bkacrB225+-rcr2确定,即(z=,此时,代理人的效用水平-为 27委托人的问题是j+-re?10满足于2,14(2)现在假定代理人的效用函数形式为u(x)=-e如对您有帮助,欢迎下载支持,谢谢!b=构造彋格敧日函数并解得

39、k-+ra-,/6=;因此,最优茂性契匏中激励系数。满足k1+ra27.考虑一个道德风险模型。 在这里, 所有者是风险中立的, 而代理人的偏好使被定义为其收入上的,代理人的期望效用为E(E() )= =E(w)E(w)- -。沟r(w)r(w)- -g(e)这里g(g( ) )代表代理人的努力成本,且g(0)=0g(0)=0苫侬).烈时,当中0 0时,并且HmHm二力.它的可能值为利润汇是取决于e e的,并且了服从e e土正态分布,其均值为方差为二二(1)(1)考虑线性契约:W(JF)=W(JF)=仪*曲T,T,证明:当必外,片与/给定时,代理人的期望效用为:耻一耐-虱心(2)(2)推导:当它

40、可观察时的最优契约.(3)(3)当色是不可观察时,请导出最优线性契约.15 如对您有帮助,欢迎下载支持,谢谢!w的均值与方差以及其付出的努力e之,1 考虑线性契豹以 k)=0+仍1.证明:当卬(句,名与(/给定时,代理人的期望效用为“十国一中俨一虱e汗叫;E|w)=E|+段)=0+国(主)=次+绿.Vaf (w) N”(ar 十二/丫河反) 二/,G【代入代理人的效用函数,得到代理人的效用为仪+优_仃?g 年).2 推导;当己可观察时的最优契豹.格已可观察时,委托人可汉直接规定利润最大化努力水平,并在达到最优努力水平时给与代理人其保留效用水平的工资,利润量大化努力水平由maxE(疔)一F(M1

41、-F(w)决定.其阶条件为耳脑)二 I.由当”。时,/g*.所以存在唯一的一个努力水平/,使得丁 3)=1,记代理人的保留效用水平为小且如果, 兰/,那么最佳契约就可以为 I 如果总之/,否则 1 帜=0; 如果那么最佳契约为, 3 三,.3当是不可观察时.请导出母优线性契豹.解;这里先假设 r=0.16如对您有帮助,欢迎下载支持,谢谢!给定 W 的决定,那么代理人的最太化问题通inax+-虱句)从一阶条件得到(图)=/明显小,同 3 工给定任何一个小,都存在一个唯一的努力值满足该条件,记该0.当#工。时,行前 0)=。,给定代理人的努力水平回尸)委托人的最大化目标为:maxE(e(/3)-E

42、w)然垂“皿他。构造彋格敧日函数工二七(4/)一式小)一八|-七 M)+0=4/)期?七上一虱 4/)它曷大化的一阶条件为=J 一叫刚二,广)上3申 bW.乂=1B二.“书官 W)斗 2 亚 72a 由它确定值/=户,将它带入个人理性约束,得到=g(e(尸)+欧佰口/因此,最优线性均束为恻=q+月”了.注:尸是唯一的.理由如下:补充定义屋()=丁 9+)之。,为了方便起见,先保仪 0)=二0没它严格大于零.此时屋 9).fi创=0_)id 的-3/(0 在o.i上连续有了0*当之时,如/+如工,所,,)二12忖/=I+产一号0又当E(0J)时.卜(尸)+2上”2 会取?).所以在1)上存在唯一

43、的夕使得了=.如果/(0)=0,那么有 E(0)=s,/(在产 T。时,仍然有八M 也其他结论完全相同一17如对您有帮助,欢迎下载支持,谢谢!28.目前我国商品房交易中普遍存在着对商品房质量的信息不对称现象,即房地产开发商对商品房质量的了解程度远比购房的居民多(1)假定买卖双方对商品房质量都有充分的了解,试作图说明高质量和低质量房的市场供求状况。函数关系为。网,当户0 时,有网必。如冷券。(2)在信息不对称条件下,试作图分析高质量房和低质量房的市场供求变动状况。(3)根据经济学原理,试简要讨论如何解决我国商品房交易中由于信息不对称造成的问题1 假定央戈双方对商乩房质危都有充分的了辨,试作图说明

44、高质审房和低质吊房的供求状况.暗加色的两条线表示低质成房的供求,果色的是高质后的.2在信息不对称条件是作图分析高质吊:房和低质吊.房的市场供求变动情况.蓝线为购房者无法区分质吊.时的需求他线.此时,高财届房的成交是卜降,低质花的上升.3根据经济学原理,试筒要讨论如何解决我国商品房交易中由信息不对称造成的问题.答士我能想到的都没太,多创意.比如信息披露(:房地产广告)中用词的规范可以通过士法来确定:建 0 非物利性房地产皿官方网站,提供权或信息;政麻监管方面,质吊监管部门垂直化.建屯房地产质量事故终生负责制;等等.29.假定有两类工人:高能力的工人和低能力的工人。工人的工资由他的能力决定一高能力的工人赚50000元,低能力的赚30000元厂商不能测度工人的能力,但是它却可以了解到工人是否有高中文凭。工人的效用由他们在工资上与为获得文凭支付的费用上的差异所决18如对您有帮助,欢迎下载支持,谢谢!(1)如果高能力工人与低能力工人在获得高中文凭中的花费是一样的,那么,在这种情况下,是否可以存在一种高能力工人拿工资、低能力工人拿低工资的分离的均衡?(2)高能力工人为了获得高中文凭所愿意支付的费用最大数量是多少?如果有一种文凭可以让雇主去识别高能力工人的话,为什么低能力

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论