下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、课题:171 勾股定理学科:初中数学教学对象:八年级学生课时:第1课时设计者:黄艳单位:河北省承德市丰宁县南关中学一、教学内容分析勾股定理的内容是:如果直角三角形的两条直角边长分别为a、b,斜边长为c,那么它揭示了直角三角形三边之间的数量关系在直角三角形中,已知任意两边长,就可以求出第三边长勾股定理常用来求解线段长度或距离问题勾股定理的探究是从特殊的等腰直角三角形出发,到网格中的直角三角形,再到一般的直角三角形,体现了从特殊到一般的探探索、发现和证明的过程证明勾股定理的关键是利用割补法求以斜边为边长的正方形的面积,教学中要注意引导学生通过探索去发现图形的性质,提出一般的猜想,并获得定理的证明我
2、国古代在数学方面又许多杰出的研究成果,对于勾股定理的研究就是一个突出的例子教学中可以介绍我国古代在勾股定理的证明和应用方面取得的成就和作出的贡献,以培养学生的民族自豪感;围绕证明勾股定理的过程,培养学生学习数学的热情和信心二、教学目标(1)经历勾股定理的探究过程了解关于勾股定理的文化历史背景,通过对我国古代研究勾股定理的成就的介绍,培养学生的民族自豪感(2)能用勾股定理解决一些简单问题 (一)知识与技能目标 学生通过观察直角三角形的三边为边长的正方形面积之间的关系,归纳并合理地用数学语言表示勾股定理的结论.(二)过程与方法目标 理解赵爽弦图的意义及其证明勾股定理的思路,能通过割补法构造图形证明
3、勾股定理了解勾股定理相关的史料,知道我国古代在研究勾股定理上的杰出成就 (三)情感态度与价值观目标 培养学生的民族自豪感;围绕证明勾股定理的过程,培养学生学习数学的热情和信心三、学习者特征分析勾股定理是反映直角三角形三边关系的一个特殊的结论在正方形网格中比较容易发现以等腰直角三角形三边为边长的正方形的面积关系,进而得出三边之间的关系但要从等腰直角三角形过渡到网格中的一般直角三角形,提出合理的猜想,学生有较大困难学生第一次尝试用构造图形的方法来证明定理存在较大的困难,解决问题的关键是要想到用合理的割补方法求以斜边为边的正方形的面积因此,在教学中需要先引导学生观察网格背景下的正方形的面
4、积关系,然后思考没有网格背景下的正方形的面积关系,再将这种关系表示成边长之间的关系,这有利于学生自然合理地发现和证明勾股定理四、教学重点及难点1、 重点:探索并证明勾股定理难点:勾股定理的探究和证明 五、情境导入使用资源2002年在北京召开了第24届国际数学家大会右图就是大会会徽的图案幻灯展示1 创设情境 复习引入1 创设情境 复习引入 国际数学家大会是最高水平的全球性数学学科学术会议,被誉为数学界的“奥运会”2002年在北京召开了第24届国际数学家大会右图就是大会会徽的图案你见过这个图案吗?它由哪些我们学过的基本图形组成?这个图案有什么特别的意义?前面我们学习了有关三角
5、形的知识,我们知道,三角形有三个角和三条边 问题1三个角的数量关系明确吗?三条边的数量关系明确吗?六、情境导入实施步骤教师活动学生活动设计意图赏会徽图,激发情趣 通过欣赏2002年国际数学年会的会徽 从感官上吸引学生,为本堂课创设美的情境,激发学生学习的兴趣。 教师引导,学生回答。我们学习过等腰三角形,知道等腰三角形是两边相等的特殊的三角形,它有许多特殊的性质研究特例是数学研究的一个方向,直角三角形是有一个角为直角的特殊三角形,中国古代人把直角三角形中较短的直角边叫做“勾”,较长的直角边叫做“股”,斜边叫做“弦” 直角三角形中最长的边是哪条边?为什么?它们除了大小关系,有没
6、有更具体的数量关系呢?这就是我们要研究的问题回顾三角形的内角和是180°以及三角形任何两边的和大于第三边,由三角形三边的不等关系引导学生思考,三角形三边之间是否存在等量关系 观察思考,探究定理 问题2 相传2500多年前,毕达哥拉斯有一次在朋友家作客,发现朋友家用砖铺成的地面图案反映了直角三角形三边的某种数量关系三个正方形A,B,C的面积有什么关系? 了解毕达哥拉斯(公元前572-前492年),古希腊著名的哲学家、数学家、天文学家感受名人的学习态度.引发学生参与讨论七、信息技术
7、应用在本课的情境导入中,首先,利用一幅优美的数学年会会徽图片的展示,激发学生们的学习兴趣,激发美的鉴赏情趣;激发同学们的民族自豪感和爱国热情,接着多媒体连续展示配有毕达哥拉斯有一次在朋友家作客,发现朋友家用砖铺成的地面图案图片,引发学生讨论. 在学习过程中感受到中国数学文化博大精深和数学的美,感悟数形结合的思想,增强对数学学习的自信;最后,多媒体展示勾股定理的内容顺利导入本课教学。 读书的好处1、行万里路,读万卷书。2、书山有路勤为径,学海无涯苦作舟。3、读书破万卷,下笔如有神。4、我所学到的任何有价值的知识都是由自学中得来的。达尔文5、少壮不努力,老大徒悲伤。6、黑发不知勤学早,白首方悔读书迟。颜真卿7、宝剑锋从磨砺出,梅花香自苦寒来。8、读书要三到:心到、眼到、口到9、玉不琢、不成器,人不学、不知义。10、一日无书,百事荒废。陈寿11、书是人类进步的阶梯。12、一日不读口生,一日不写手生。13、我扑在书上,就像饥饿的人扑在面包上。高尔基14、书到用时方恨少、事非经过不知难。陆游15、读一本好书,就如同和一个高尚的人在交谈歌德
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度园艺产品包装与物流服务合同文本3篇
- 2024年医疗废弃物危险品运输合作协议3篇
- 2024年度生态园林栽树与节水灌溉承包合同3篇
- 2024年度个人住房贷款委托管理服务合同3篇
- 2024年度有机肥产品研发与市场推广合作协议6篇
- 2024喷漆设备升级改造项目房租租赁协议书3篇
- 2024年度植物新品种知识产权授权协议3篇
- 2024医疗器械研发及生产质量控制合同样本3篇
- 2024年度印刷品印刷材料环保认证采购合同3篇
- 2024年危险废物处理与环保设施建设与环保设施运维服务合同3篇
- 2023年软件主管年终业务工作总结
- 2019疏浚工程预算定额
- 笙的演奏技术与教学
- 大学生预征对象登记表模板
- 《明辨是非》课件
- 重症监护专科护理质控考核标准
- 2023版设备管理体系标准
- 高标准农田输配电工程施工方案与技术措施
- 外来人员车辆入厂安全须知
- 小学校本课程-寻觅沉睡的宝船教学课件设计
- 2022-2024学年校方责任保险统保方案
评论
0/150
提交评论