U马达课题测试_第1页
U马达课题测试_第2页
U马达课题测试_第3页
U马达课题测试_第4页
U马达课题测试_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、U/V马达培训课程课程试题若有下列客户要求,请用磁路设计及分析法,设计出基本两极U马达的转子叠厚、槽数直径、齿宽、绕数、线径定子磁极角度、厚度、叠厚、绕数、线径定子磁回路宽度气隙讨论碳刷如何选材客户要求:马达最大外径:120mm电压:240V 60HZ额定转速:10000-14000rpm最高输出:600W电磁设计程序(1)额定数据1. 额定功率 2. 额定电压 3. 额定转速 4. 额定转矩 5. 额定频率 (2)技术要求6. 效率 7. 功率因数 (3)冲片尺寸及主要数据参见附图,冲片尺寸(cm):b0=0.25 h0=0.070 h2=0.9 bp=3.8 b1=0.540 h=0.10

2、 hj1=0.9 hp=1 R=0.16 h1=0.67 L=5.28. 定子外径 9. 定子内径 10. 电枢外径 11. 电枢内径 12. 铁心长度 13. 气隙 14. 电枢槽数 15. 极距 16. 极弧系数 17. 计算极距 18. 换向片数 K=3819. 换向器直径 DK=3.3cm20. 电枢圆周线速度 21. 换向器线速度 10-2=10-2=21.588m/s22. 定子极高 23. 定子极宽 (4)电磁数据计算24. 负载电流 25. 电枢绕组线规 导线截面积 26. 电枢绕组电流密度 2=12.635227. 电枢总导体数 式中,取线负荷A=129A/cm28. 电枢每

3、槽导线数 29. 电枢槽满率 =59.94%30. 电枢绕组平均半匝长 式中31. 电枢绕组电阻 =3.76532. 计算功率 式中 33. 旋转电动势 34. 实槽节距 35. 短距系数 36. 每极磁通 (5)换向性能37. 换向器节距 38. 换向器片距 39. 电刷尺寸 40. 电刷电流密度 41. 换向区域宽度 式中 42. 电枢齿距 43. 电枢齿顶宽 44. 电枢齿宽 上部齿宽:下部齿宽: 平均尺宽: 45. 电枢槽宽 46. 电枢槽形系数 式中 47. 电枢单位漏磁导 48. 电枢每元件匝数 49. 换向元件电抗电动势 50. 换向元件反应电动势 51. 换向元件变压器电动势

4、(6)磁路计算52. 定子轭高 53. 电枢轭高 式中 转轴采用双重绝缘,。54. 定子轭部磁密 55. 电枢轭部磁密 56. 定子磁极磁密 57. 气隙磁密 58. 电枢齿磁密 59. 根据和查附录表得,根据和查附录表得,60. 定子轭部磁路长度 61. 电枢轭部磁路长度 62. 电枢齿部磁路长度 63. 气隙系数 64. 气隙磁压降 65. 定子轭部磁压降 66. 电枢轭部磁压降 67. 定子磁极磁压降 68. 电枢齿部磁压降 69. 去磁磁动势 70. 换向增磁磁动势 71. 电枢反应磁动势 式中 (查附录图)72. 总磁压降73. 定子每极匝数 74. 定子导线线规 导线截面积 75.

5、 定子绕组电流密度 (7)工作性能计算76. 定子绕组线模宽度 77. 定子绕组线模长度 78. 定子绕组线模高度 79. 定子绕组线模每层匝数 式中 80. 定子绕组宽度 81. 定子绕组平均每匝长度 82. 定子绕组电阻 83. 定子绕组电阻电压降 84. 电枢绕组电压降 85. 定子绕组漏抗电压降 86. 电枢绕组漏抗电压降 87. 定子绕组自感电动势 88. 电枢绕组交轴电动势 89. 电枢绕组变压器电动势 90. 定子轭部重量 91. 定子磁极重量 92. 电枢轭部重量 93. 电枢齿部重 94. 电枢旋转频率 95.基本铁耗 式中 、,可查表得零速时电枢磁滞损耗 式中 、查表可得电

6、枢谐波损耗 95. 总损耗 96. 换向损耗 式中 (按查附录图)97. 电压有功分量 ;98. 电压无功分量 99. 端电压 100. 功率因数 ,与24项相符101. 定子铜耗 102. 电枢铜耗 103. 机械损耗和附加损耗 (根据电枢外径和转速查附录图)。104. 总损耗 105. 效率 106. ,与24项相符。(8)有效材料107. 硅钢片重量 108. 定子绕组铜重量 109. 电枢然组铜重量 总结本次毕业设计是大学教学计划的重要环节,也是大学最后的学习阶段和综合训练阶段,是对学生学习与实践成果的全面总结,更是对大学四年教学计划和培养目标的全面检验。毕业设计不仅对所学知识起到深化

7、和提高的作用,也是毕业资格认定的重要依据。通过这次毕业设计,使我对所学的专业知识得到了一个总结,也解决了许多以往学习中还不太明白的问题,让我对异步电动机的设计有了一个更直观的认识,也提高了我对所学专业知识的应用能力。因为一直都是在学理论知识,所以欠缺知识的实际运用,一开始老是觉得比较难,而且大四又有很多外来的因素干扰,使得毕业设计中遇到了蛮多的困难,还好在老师和同学们的帮助下坚持下来,之后发现其实也没想象中的难,什么事情只要钻进去了,就会觉得豁然开朗。在毕业设计过程中,我发现我对以往所学知识的掌握还不够彻底,还存在着许多问题,于是又反复看了几遍电机学、电机设计等基本专业书籍,对于这几门专业课程

8、有了更深的认识。通过毕业设计的学习和实践,我收获了很多,也扩大了我的视野,进一步认识到自己的水平。通过毕业设计,夯实了我在学校所学的专业基础知识,提高了实践能力,使我能尽快地处理和解决做毕设过程中遇到的问题,特别是提高自学能力和独立思考并解决问题的能力。 当然经过这么长时间的准备、酝酿,终于把论文写好了,这也就意味着毕业设计也快要落下帷幕了。其中的酸甜苦辣也只有自己体验出来,从刚刚开始一步一步手算程序,了解到各个公式中参数的含义及每一步骤计算的目的。然后一遍又一遍的对电磁设计程序进行修改优化。一开始的确有些茫然,面对诸多的数据,不知道改哪些也不敢随便乱改,只有自己一遍一遍的尝试,结合理论知识和

9、老师的指导,经过几十次的修改,才最后得到最优化的程序。最后,为了画好定转子冲片图和装配图,自己自学了AUTOCAD。 总而言之,这次是大学最后一次考验,也是对大学四年的考察,总的来说还比较满意吧。 参考文献1 孙旭东,王善铭. 电机学M. 北京:清华大学出版社,2006年2 戴文进,徐龙权. 电机学M. 北京:清华大学出版社,2008年3 陈世坤. 电机设计(第2版)M. 北京:机械工业出版社,2000年4 张国华. 单相交流串励电动机温升计算和振动分析D. 南京: 东南大学,2004年5 焦志强. 带换向器的单相串励电动机调速控制系统谐波问题研究D.西安:西安电子科技大学,2009年6 罗洪

10、. 单相串励换向器电机异常噪声故障原因和排除方法D.瑞安:瑞安长城换向器有限公司,2003年7 彭亦胥. 单相串励电动机的换向及其改善方法D.丽水:丽水职业技术学院,2004年附图 外文翻译 2006 IEEE COMPEL Workshop, Rensselaer Polytechnic Institute, Troy, NY, USA, July 16-19, 2006 A Preliminary Investigation of Computer-Aided Schwarz-Christoffel Transformation for Electric Machine Design an

11、d AnalysisTimothy C. OConnell and Philip T. KleinGrainger Center for Electric Machinery and Electro mechanics Department of Electrical and Computer Engineering University of Illinois at Urbana-Champaign 1406 W. Green St.Urbana, IL 61801-2918 USA Abstract-An alternative method to finite element analy

12、sis (FEA) for electric machine design and analysis is presented that applies Schwarz-Christoffel (SC) conformal mapping theory using the SC Toolbox for MATLAB® that has appeared in the previous literature. In this method, a two-dimensional (2D) developed machine cross-section domain is mapped v

13、ia SC transformation to a concentric cylinder domain where solutions for the electromagnetic (EM) fields are known. These solutions are mapped back to the original domain, thus solving the original problem. All mapping is done via the SC Toolbox. Examples are given in which the procedure is used to

14、calculate the EM field in the air gap of and the force on the rotor of various 2D developed machine cross-sections. The numerical accuracy of the results is verified by comparing the solutions as the air gap gets small with magnetic equivalent circuit (MEC)-derived co-energy solutions.I. INTRODUCTIO

15、N The most general electric machine design problem can be described as follows given a set of desired machine output characteristics, find the optimum machine geometry, materials, and input source characteristics that will achieve these goals. This is a formidable problem in its most general form, e

16、specially -considering the recent increase in the availability of inverters, exotic permanent magnet (PM) materials, and low-cost, precision manufacturing. Usually several - assumptions and basic a priori design decisions must be made to render the problem tractable. A standard technique is to use b

17、asic machine theory to generate a rough design which might include the type of machine (synchronous, induction, PM, etc.), the number of poles, and the materials. The base design is then analyzed and refined in an iterative process using FEA software until an acceptable match to the desired output i

18、s found. While FEA is a powerful analysis tool that is fairly easy to use and widely available in a number of commercial software packages, its utility in design is less obvious. Using FEA, it is often difficult to see the relationships between various input and output parameters without extensive a

19、nd time-consuming iterations. Frequently, the necessary accuracy needed for a given problem cannot be achieved without unreasonable computer run times. Thus, an alternative to FEA, more suited to design, can be a useful addition to the machine designers repertoire .This paper investigates the utilit

20、y of the MATLAB® SC Toolbox, a free add-on toolbox developed by T. Driscoll 1-3 that automates the process of calculating SC maps. The SC method is a 2D complex analysis tool that allows one to circumvent many of the difficulties encountered when solving a boundary value problem on a domain def

21、ined by a complicated geometry. Using a complex conformal mapping from the problem domain to a simpler domain, one can more easily solve the problem, and then map the solution back to the original geometry. The key to successfully applying the SC method is to find the correct mapping between domains

22、. The SC Toolbox makes this step much easier than it has been previously and thus allows further exploration into the merits of SC mapping as a viable machine design tool. The torque (force) on the moveable member of an electric machine is usually found by applying either the Coulomb virtual work (C

23、VW) method 4, 5 or the Maxwell stress tensor (MST) method 6 to the EM fields 7-10. In either method, the force is found as the product of field terms; thus, any errors in the calculated fields are compounded when force is computed. In addition, the useful forces in an electric machine are typically

24、concentrated at sharp corners (i.e. at pole teeth corners) where FEA solutions are least accurate. When using an FEA field solution, both CVW and MST are sensitive to the mesh choice because the fields are interpolated between a finite numbers of solution points at the mesh nodes. In contrast, SC co

25、nformal mapping theory can calculate an accurate solution for the fields at every point. No interpolation is necessary. Inherently, the accuracy of the SC mapping does not suffer at sharp- corners. The SC Toolbox makes it much easier than previously possible to find the EM fields accurately using co

26、nformal mapping. With an accurate field solution force calculation also becomes more accurate and easier to implement. The utility of SC mapping is explored here for the following reasons: (i) its implementation is much easier than previously owing to the introduction of the SC Toolbox; (ii) it can

27、produce an accurate field solution at every point that does not suffer near sharp corners; (iii) the solutions allow anII. BACKGROUND Early machine designers quickly saw the difficulties of solving the EM - field equations in electric machines. In Teslas seminal induction machine paper 11 there are

28、almost no equations. Much of his design was based on a fundamental understanding of the field interactions necessary to create motion Behr end 12 developed several graphical arose when designers attempted to analyze pole-pieces, slots, and teeth, all of which significantly changed the boundary condi

29、tions and field distributions in machines. Conformal mapping, of which the SC method is a subset, was used by Carter in an attempt to better understand these problems 13, 14. However, due to the mathematical -complexities he encountered, Carter recommended against using SC mapping for all but the si

30、mplest cases. Signers subsequently used measurements and observations to develop empirical design equations; equivalent circuit models, magnetic equivalent circuits (MEC) and graphical methods were all commonplace by 1916 15. The success of these methods is well established. In 1929, Hague 16 noted

31、there was insufficient literature describing fundamental machine interactions from Maxwells equations. He presented a theory for determining the EM fields of current-carrying conductors in the air gap of various iron geometries, the solution of which describes the operation of electrical machines. H

32、ague found it surprising that only one person before him (Searle, in 1898 17) had considered this problem. While Hagues work was important in bridging the gap between fundamental field-based machine analysis and circuit-based models, it did not present a useful alternative to the well-established me

33、thods because Hagues solutions were in the form of infinite series. In fact, his solutions have remained virtually unused since he published them. A quick literature search reveals that less than twenty authors have cited Hagues work in their research over the past 80 years. Conversely, other textbo

34、ok methods dating from the early 20th century persist to the present. Traditionally, conformal mapping has been used to solve problems in electro- and magneto-statics 18. More recently, conformal mapping has been used, among other things, for the analysis and design of polygonal resistors 19, magnet

35、icRead-write heads 20, 21, coplanar aveguides 22 ,and lector agnatic actuators 23. The utility of the MST ethos for machine force alkylation has been investigated recently, but with the local EM fields generated using FEA solutions 24, 25. We know of no work to date that attempts to use the MST meth

36、od on EM fields calculated by SC mapping to examine electricMachines. This work is a preliminary investigation into both the SC methods utility for machine design and the SC Toolboxs utility in implementing the method.III. SC MAPPINGA. TheoryThe SC Mapping Theorem can be stated as follows 26: Let P

37、be the interior of a polygon Having vertices w1, , wn and interior angles 1, , n in counterClockwise order. Let f be any conformal map from the upper half-plane H+ to P with f( f )= wn. Then, for some complex constants A and C, where wk = f(zk) for k = 1, , n-1 This theorem states that a conformal m

38、ap (a complex map that preserves angles locally) can always be constructed that maps the upper (lower, respectively) half-plane to the interior (exterior) of any polygon, and that the mapping f will have the above form. The formula in (1) can be modified to allow maps from disks, bi-infinite strips,

39、 and rectangles (all referred to as canonical domains) to a polygon. The theorems utilitys in allowing the user to solve a difficult boundary value problem on an arbitrary polygon-shaped domain by first solving the problem in a canonical domain and then map ping the result to the desired domain. Unf

40、ortunately, for problems with more than 3 vertices, unless they are symmetric, in general the SC integral in (1)has no closed-form solution. In addition, in problems of this size the locations of points zk, called preventives, are unknown a priori. In other words, the target polygon is known, but th

41、e points in the canonical domain corresponding to its vertices are not. Thus, the SC method requires three numerical steps: (a) finding points zk; this is known as the parameter problem, (b) calculating the SC integral in (1), and(c) inverting the map. Historically, these steps have been difficult t

42、o implement numerically for meaningful problems. But recently, each of (a)-(c) has been coded into the SC Toolbox, in which the user specifies the canonical and source domains, and the Toolbox calculates the SC map. The SC Toolbox and its features are now described.B. SC Toolbox for MATLAB®The

43、SC Toolbox was originally released in 1994. The current Version2.3 were released in 2005.A key improvement in Version 2.3 is the addition of the CRD Algorithm 2,27. This algorithm facilitates mapping to multiply elongated regions, which are normally very difficult to map due to crowding1. Most typic

44、al motor air gap polygons have multiple elongations due to the stator and rotor slots, so this new functionality is key in making theToolbox useful for motor design. The Toolbox provides a library of command line functions as well as a graphical user interface that allows easier visualization of the

45、 process. The key functions used are the following:中文翻译应用计算机辅助施瓦兹克里斯托菲尓变换电机设计和分析的初级研究摘要:借助已经出现在以前文献中的MATLAB SC工具箱应用施瓦兹-克里斯托菲尔保角映射理论进行电机设计和分析的有限元分析替代方法已经问世。使用这一方法,以使用SC映射把二维开发的机械横截面区域变换为在那进行电磁场求解的同轴圆筒区域而出名。这些解决方案再映射到原始区域,这样就解决了原始问题。所有的映射都是借助工具箱进行的。在给出的例子中,那些程序都被用作计算二维开发机械截面气隙中的电磁场和转子上的力矩。磁性等效电路数值计算的结

46、果通过方案比较进行验证,因为气隙得到小磁等效电路进而导出同能方案。最普遍的电机设计问题可以记述于如下,给出一组要求达到的电机输出特性,找出能达到这些目标的电机最佳几何形状、材料和输入电源特点,在其最普遍的形式上这是一个棘手的问题,尤其考虑到最近在变换器应用、独特的永磁材料、低成本精密的制造业上新增的问题。 通常几个假定和基本的先验的设计方案必须达到使问题便于决。一个标准的技术是使用机械理论产生一个粗糙的可以包括电机类型(同步的,电磁感应,永磁等等)、极数和材料的设计。在一个使用有限元分析软件的迭代过程中一个基本的设计方案被分析和优化出,直到找到可以接受的与预期相匹配的结果。尽管有限元分析软件是一个很强大的,相对比较容易使用和在很多商业软件里相对应用比较广泛的分析工具,但在设计方面的实用性不那么明显。使用有限元分析软件,没有大量的费时的迭代,它通常很难找到各种各样的输入输出参数之间的联系。通常,没有不切实际

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论